-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.py
143 lines (109 loc) · 3.95 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from gensim.models import KeyedVectors
import numpy as np
from scipy import sparse
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.utils import shuffle as skshuffle
from collections import defaultdict
from sklearn.metrics import f1_score
import json
import sys
import warnings
warnings.filterwarnings("ignore")
from tensorboardX import SummaryWriter
from datetime import datetime
class TopKRanker(OneVsRestClassifier):
def predict(self, X, top_k_list):
assert X.shape[0] == len(top_k_list)
probs = np.asarray(super(TopKRanker, self).predict_proba(X))
all_labels = sparse.lil_matrix(probs.shape)
for i, k in enumerate(top_k_list):
probs_ = probs[i, :]
labels = self.classes_[probs_.argsort()[-k:]].tolist()
for label in labels:
all_labels[i,label] = 1
return all_labels
class ClassificationArguments():
def __init__(self, config_path):
with open(config_path, 'r') as j:
conf = json.loads(j.read())
self.emb = conf["embedding_path"]
self.label = conf["labels_path"]
self.shuffle = conf["shuffles"]
self.metric = conf["metric"]
self.experiment_name = conf["experiment_name"]
def load_embeddings(embeddings_file):
model = KeyedVectors.load_word2vec_format(embeddings_file, binary=False)
features_matrix = np.asarray([model[str(node)] for node in range(len(model.index_to_key))])
print("Embeddings successfully loaded.")
return features_matrix
def load_labels(labels_file, nodesize):
with open(labels_file) as f:
context = f.readlines()
label = sparse.lil_matrix((nodesize, len(context)))
for i, line in enumerate(context):
line = map(int,line.strip().split('\t'))
for node in line:
label[node, i] = 1
print("Labels successfully loaded.")
return label
def parse_args(config_path):
args = ClassificationArguments(config_path)
return args
def evaluate(config_path):
args = parse_args(config_path)
features_matrix = load_embeddings(args.emb)
nodesize = features_matrix.shape[0]
label_matrix = load_labels(args.label, nodesize)
# make a number of shuffled copies of the data
number_shuffles = args.shuffle
shuffles = []
for _ in range(number_shuffles):
shuffles.append(skshuffle(features_matrix, label_matrix))
all_results = defaultdict(list) # by default, returns an empty list
training_percents = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
for train_percent in training_percents:
for shuf in shuffles:
X, y = shuf
training_size = int(train_percent * nodesize)
X_train = X[:training_size, :]
y_train = y[:training_size, :]
X_test = X[training_size:, :]
y_test = y[training_size:,:]
clf = TopKRanker(LogisticRegression())
clf.fit(X_train, y_train)
# find out how many labels should be predicted
# usually not needed
top_k_list = list(map(int, y_test.sum(axis=1).T.tolist()[0]))
preds = clf.predict(X_test, top_k_list)
results = {}
averages = ["micro", "macro", "samples", "weighted"]
for average in averages:
results[average] = f1_score(y_test, preds, average=average)
all_results[train_percent].append(results)
if len(args.experiment_name) > 0:
writer = SummaryWriter("./tensorboard/" + args.experiment_name + "__" + datetime.now().strftime("%Y%m%d-%H%M%S"))
print("Starting tensorboard.")
else:
print('-------------------')
print('Train percent :', 'metric value')
for train_percent in sorted(all_results.keys()):
av = 0
stder = np.ones(number_shuffles)
i = 0
for x in all_results[train_percent]:
stder[i] = x[args.metric]
i += 1
av += x[args.metric]
av /= number_shuffles
if len(args.experiment_name) > 0:
writer.add_scalar("f1", av, global_step=int(train_percent*100))
else:
print(train_percent, ":", av)
if __name__ == '__main__':
if len(sys.argv) == 2:
conf_path = sys.argv[1]
else:
conf_path = "config.json"
evaluate(conf_path)
print("Test completed successfully.")