-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathperception_todo_4.py
533 lines (411 loc) · 16.7 KB
/
perception_todo_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
#!/usr/bin/env python
# coding:utf-8
import cv2
import numpy as np
import os
from modules.sensors.proto.sensor_image_pb2 import Image
from modules.planning.proto.planning_pb2 import Trajectory
from modules.planning.proto.planning_pb2 import Point
from cyber_py import cyber
import sys
sys.path.append("../")
mask_right_cor = np.array([[[443, 300], [443, 342], [375, 342]]], dtype=np.int32)
mask_right_cor_a = (mask_right_cor[0][0][1] - mask_right_cor[0][2][1]) / (
mask_right_cor[0][0][0] - mask_right_cor[0][2][0])
mask_right_cor_b = (mask_right_cor[0][0][1]) - (mask_right_cor[0][0][0]) * mask_right_cor_a
road_weight = 260
# roll
src_corners = [[191, 223], [272, 223], [182, 269], [297, 269]]
# turn to
dst_corners = [[152, 270], [267, 270], [152, 339], [267, 339]]
M = cv2.getPerspectiveTransform(np.float32(src_corners), np.float32(dst_corners))
car_mid_point = 228
def perspective_transform(image, m, img_size=None):
if img_size is None:
img_size = (image.shape[1], image.shape[0])
warped = cv2.warpPerspective(image, m, img_size, flags=cv2.INTER_LINEAR)
return warped
def clean_right(x_c, y_c):
val_ri_x = [tesd(x_c[ir], y_c[ir]) for ir in range(len(x_c))]
rightx_d = []
righty_d = []
for i_i, ir in enumerate(val_ri_x):
if ir == 0:
rightx_d.append(x_c[i_i])
righty_d.append(y_c[i_i])
return np.array(rightx_d), np.array(righty_d)
def get_win_point(leftx, lefty, rightx, righty, shape):
mean_x = []
left_x_re = []
right_x_re = []
mean_y = []
tag_y = shape[0] - 1
left_tmp = -1
right_tmp = -1
get_polt_tag = 0
bs_tag = int(shape[1] / 50)
pox_arr_x_l = []
pox_arr_x_r = []
pox_arr_y = []
while tag_y >= 0:
left_x_0 = -1
right_x_0 = shape[1]
if tag_y in lefty:
for i_y, ic in enumerate(lefty):
if ic == tag_y:
left_x_0 = leftx[i_y]
break
if tag_y in righty:
for i_y, ic in enumerate(righty):
if ic == tag_y:
right_x_0 = rightx[i_y]
break
if left_x_0 == -1 and right_x_0 == shape[1]:
tag_y -= 1
get_polt_tag += 1
continue
# left no
if right_x_0 < shape[1] and left_x_0 == -1:
if left_tmp > 0:
left_x_0 = left_tmp
else:
left_x_0 = right_x_0 - road_weight
if right_x_0 == shape[1] and left_x_0 > -1:
if right_tmp > 0:
right_x_0 = right_tmp
else:
right_x_0 = left_x_0 + road_weight
left_tmp = left_x_0
right_tmp = right_x_0
if get_polt_tag < bs_tag:
pox_arr_x_l.append(left_x_0)
pox_arr_x_r.append(right_x_0)
pox_arr_y.append(tag_y)
else:
if len(pox_arr_y) > 0:
x_l = int(np.sum(pox_arr_x_l) // len(pox_arr_x_l))
x_r = int(np.sum(pox_arr_x_r) // len(pox_arr_x_r))
left_x_re.append(x_l)
right_x_re.append(x_r)
mean_x.append(int((x_r - x_l) / 2 + x_l))
mean_y.append(int(np.average(pox_arr_y)))
pox_arr_x_l = []
pox_arr_x_r = []
pox_arr_y = []
get_polt_tag = 0
tag_y -= 1
get_polt_tag += 1
return left_x_re, right_x_re, mean_x, mean_y
def get_midpoint(leftx, lefty, rightx, righty, shape):
mean_x = []
mean_y = []
tag_y = shape[0] - 1
left_tmp = -1
right_tmp = -1
get_polt_tag = 0
bs_tag = int(shape[1] / 50)
pox_arr_x_l = []
pox_arr_x_r = []
pox_arr_y = []
while tag_y >= 0:
left_x_0 = -1
right_x_0 = shape[1]
if tag_y in lefty:
for i_y, ic in enumerate(lefty):
if ic == tag_y:
left_x_0 = leftx[i_y]
break
if tag_y in righty:
for i_y, ic in enumerate(righty):
if ic == tag_y:
right_x_0 = rightx[i_y]
break
if left_x_0 == -1 and right_x_0 == shape[1]:
tag_y -= 1
get_polt_tag += 1
continue
# left no
if right_x_0 < shape[1] and left_x_0 == -1:
if left_tmp > 0:
left_x_0 = left_tmp
else:
left_x_0 = right_x_0 - road_weight
if right_x_0 == shape[1] and left_x_0 > -1:
if right_tmp > 0:
right_x_0 = right_tmp
else:
right_x_0 = left_x_0 + road_weight
left_tmp = left_x_0
right_tmp = right_x_0
if get_polt_tag < bs_tag:
pox_arr_x_l.append(left_x_0)
pox_arr_x_r.append(right_x_0)
pox_arr_y.append(tag_y)
else:
if len(pox_arr_y) > 0:
x_l = int(np.sum(pox_arr_x_l) // len(pox_arr_x_l))
x_r = int(np.sum(pox_arr_x_r) // len(pox_arr_x_r))
mean_x.append(int((x_r - x_l) / 2 + x_l))
mean_y.append(int(np.average(pox_arr_y)))
pox_arr_x_l = []
pox_arr_x_r = []
pox_arr_y = []
get_polt_tag = 0
tag_y -= 1
get_polt_tag += 1
return mean_x, mean_y
def abs_sobel_thresh(image, sobel_kernel=3, orient='x', thresh=(0, 255)):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
if orient == 'x':
sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
else:
sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
abs_sobel = np.absolute(sobel)
scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel))
sxbinary = np.zeros_like(scaled_sobel)
sxbinary[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1
return sxbinary
def get_tag_mask(image_input, tag_roi=(228, 340)):
gray_d = cv2.cvtColor(image_input, cv2.COLOR_BGR2GRAY)
img_d = cv2.threshold(gray_d, 100, 220, cv2.THRESH_BINARY_INV)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
img_d = cv2.erode(img_d, kernel, iterations=2)
img_d = cv2.dilate(img_d, kernel, iterations=3)
cv2.fillPoly(img_d, mask_right_cor, 0)
image, contours, hierarchy = cv2.findContours(img_d, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_TC89_KCOS)
vis = np.array([(tag_roi[0], tag_roi[1]), (tag_roi[0] - 20, tag_roi[1]), (tag_roi[0] + 20, tag_roi[1])])
c_max = []
max_area = 0
max_cnt = contours[0]
for i in range(len(contours)):
cnt = contours[i]
loca_tem = np.array([cv2.pointPolygonTest(cnt, (vis[0][0], vis[0][1]), False),
cv2.pointPolygonTest(cnt, (vis[1][0], vis[1][1]), False),
cv2.pointPolygonTest(cnt, (vis[2][0], vis[2][1]), False)])
is_black = 0
if loca_tem.max() <= 0:
continue
for i_i, poi in enumerate(loca_tem):
if poi == 1 and img_d[vis[i_i][1]][vis[i_i][0]] == 220:
is_black = 1
break
if is_black == 1:
area = cv2.contourArea(cnt)
if loca_tem.sum() == 3:
max_cnt = cnt
max_area = area
break
if area > max_area:
max_cnt = cnt
max_area = area
else:
continue
temp = np.ones(image_input.shape, np.uint8) * 255
if max_area > 0:
c_max.append(max_cnt)
cv2.drawContours(temp, c_max, -1, (255, 0, 0), thickness=-1)
else:
temp = np.dstack((img_d, img_d, img_d)) * 255
return temp
def translation_view(x, y):
# x2 = 100.7 + 0.00305 * x1 - 0.1677 * y1
# y2 = 28.43 - 0.1554 * x1 + 0.008986 * y1
x_r = (x * 0.00305 - y * 0.1677 + 100.7) / 100.00
y_r = (x * (-0.1554) + y * 0.008986 + 28.43) / 100.00
return x_r, y_r
def tesd(x, y):
if (mask_right_cor_b + x * mask_right_cor_a - 4) < y:
return 1
else:
return 0
def findMaxContour(image_input, img_d, contours):
# gray_d = cv2.cvtColor(image_input, cv2.COLOR_BGR2GRAY)
tag_roi = (228, 340)
vis = np.array([(tag_roi[0], tag_roi[1]), (tag_roi[0] - 20, tag_roi[1]), (tag_roi[0] + 20, tag_roi[1])])
c_max = []
max_area = 0
max_cnt = contours[0]
for i in range(len(contours)):
cnt = contours[i]
loca_tem = np.array([cv2.pointPolygonTest(cnt, (vis[0][0], vis[0][1]), False),
cv2.pointPolygonTest(cnt, (vis[1][0], vis[1][1]), False),
cv2.pointPolygonTest(cnt, (vis[2][0], vis[2][1]), False)])
is_black = 0
if loca_tem.max() <= 0:
continue
for i_i, poi in enumerate(loca_tem):
if poi == 1 and img_d[vis[i_i][1]][vis[i_i][0]] == 220:
is_black = 1
break
if is_black == 1:
area = cv2.contourArea(cnt)
if loca_tem.sum() == 3:
max_cnt = cnt
max_area = area
break
if area > max_area:
max_cnt = cnt
max_area = area
else:
continue
temp = np.ones(image_input.shape, np.uint8) * 255
if max_area > 0:
c_max.append(max_cnt)
cv2.drawContours(temp, c_max, -1, (255, 0, 0), thickness=-1)
else:
temp = np.dstack((img_d, img_d, img_d)) * 255
return temp
def find_line_fit(img, midpoint=None, nwindows=9, margin=100, minpix=30):
histogram = np.sum(img[img.shape[0] // 2:, :], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((img, img, img)) * 255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
if midpoint is None:
midpoint = np.int(histogram.shape[0] / 2)
else:
midpoint = np.int(midpoint)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Set height of windows
window_height = np.int(img.shape[0] / nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = img.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = img.shape[0] - (window + 1) * window_height
win_y_high = img.shape[0] - window * window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
rightx, righty = clean_right(rightx, righty)
out_img[lefty, leftx] = [255, 0, 0]
out_img[righty, rightx] = [0, 0, 255]
if len(leftx) == 0:
if len(rightx) > 0:
leftx = rightx - road_weight
lefty = righty
else:
leftx = [[0] for x_t in range(0, 9)]
lefty = [[img.shape[0] - y_t * 10] for y_t in range(0, 9)]
rightx = [[img.shape[1] - 1] for x_t in range(0, 9)]
righty = [[img.shape[0] - y_t * 10] for y_t in range(0, 9)]
if len(righty) == 0:
if len(leftx) > 0:
rightx = leftx + road_weight
righty = lefty
# mean_x, mean_y = get_midpoint(leftx, lefty, rightx, righty, img.shape)
left_list, right_list, mean_x, mean_y = get_win_point(leftx, lefty, rightx, righty, img.shape)
out_img[mean_y, mean_x] = [255, 255, 0]
return left_list, right_list, mean_x, mean_y, out_img
class Exercise(object):
def __init__(self, node):
self.node = node
self.planning_path = Trajectory()
self.planning_path_left = Trajectory()
self.planning_path_right = Trajectory()
# TODO create reader
self.node.create_reader("/realsense/compressed_image", Image, self.callback)
# TODO create writer
self.writer = self.node.create_writer(
"/perception/road_mean_point", Trajectory)
self.writer_left = self.node.create_writer(
"/perception/road_left_point", Trajectory)
self.writer_right = self.node.create_writer(
"/perception/road_right_point", Trajectory)
def callback(self, data):
# TODO
# print(data.frame_no)
# TODO reshape
self.getmeanpoint(data)
# TODO publish, write to channel
if not cyber.is_shutdown():
self.write_to_channel()
def write_to_channel(self):
# TODO
self.writer.write(self.planning_path)
self.writer_left.write(self.planning_path_left)
self.writer_right.write(self.planning_path_right)
def getmeanpoint(self, data):
new_image = np.frombuffer(data.data, dtype=np.uint8)
new_image = cv2.imdecode(new_image, cv2.IMREAD_COLOR)
img = cv2.resize(new_image, (424, 408))
wrap_img = perspective_transform(img, M, img_size=(444, 343))
gray_d = cv2.cvtColor(wrap_img, cv2.COLOR_BGR2GRAY)
wrap_img_2 = cv2.threshold(gray_d, 100, 220, cv2.THRESH_BINARY_INV)[1]
# TODO e begin
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
img_d = cv2.erode(wrap_img_2, kernel, iterations=2)
wrap_img_2 = cv2.dilate(img_d, kernel, iterations=3)
# TODO e end
cv2.fillPoly(img_d, mask_right_cor, 0)
# TODO e begin
image, contours, hierarchy = cv2.findContours(wrap_img_2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)
# TODO e end
# TODO f begin
wrap_img3 = findMaxContour(wrap_img, wrap_img_2, contours)
# TODO f end
# TODO g begin
binary = abs_sobel_thresh(wrap_img3, orient='x', sobel_kernel=3, thresh=(20, 255))
left_list, right_list, mean_x, mean_y, out_img2 = find_line_fit(binary, midpoint=car_mid_point, margin=100)
# TODO g end
self.planning_path = Trajectory()
self.planning_path_left = Trajectory()
self.planning_path_right = Trajectory()
if len(mean_y) > 0:
mean_x_real, mean_y_real = translation_view(np.asarray(mean_x), np.asarray(mean_y))
left_list_real, left_y_real = translation_view(np.asarray(left_list), np.asarray(mean_y))
right_list_real, right_y_real = translation_view(np.asarray(right_list), np.asarray(mean_y))
for i, point in enumerate(mean_y_real):
point_xy = Point()
point_xy.x = mean_x_real[i]
point_xy.y = point
self.planning_path.point.append(point_xy)
point_xy = Point()
point_xy.x = left_list_real[i]
point_xy.y = left_y_real[i]
self.planning_path_left.point.append(point_xy)
point_xy = Point()
point_xy.x = right_list_real[i]
point_xy.y = right_y_real[i]
self.planning_path_right.point.append(point_xy)
print("left:", np.asarray(left_list_real).mean(), "right:", np.asarray(right_list_real).mean(), "mean:",
np.asarray(mean_x_real).mean())
if __name__ == '__main__':
cyber.init()
# TODO update node to your name
exercise_node = cyber.Node("to_mid_point")
exercise = Exercise(exercise_node)
exercise_node.spin()
cyber.shutdown()