-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathCentralityScoreComputer.py
152 lines (98 loc) · 4.84 KB
/
CentralityScoreComputer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# coding: utf-8
import numpy as np
import sys
sys.path.insert(0,"../python/")
import centrality_utils.weight_funtions as wf
import centrality_utils.temporal_katz_computer as tkc
import centrality_utils.decayed_indegree_computer as dic
import centrality_utils.temporal_pagerank as tprc
import centrality_utils.static_pagerank_computer as sprc
import centrality_utils.static_indegree_computer as sidc
import centrality_utils.static_negative_beta_measure_computer as snbmc
import centrality_utils.static_harmonic_centrality_computer as shcc
from centrality_utils.base_computer import link2str
import simulator_utils.graph_simulator as gsim
from data_processing.tennis_player_processing import load_dataset_parameters
# # 1. Load Parameters
# ### Works only after downloading the tennis player datasets!
#dataset_id = "uo17"
dataset_id = "rg17"
min_epoch, num_days, _, _, _, _ = load_dataset_parameters(dataset_id)
delta = 3600
index_threshold = int(num_days * 86400 / delta + 1)
print(delta, index_threshold)
# # 2. Load Graph Data
data_path = '../data/%s_data/raw/%s_mentions.csv' % (dataset_id, dataset_id)
score_output_dir = '../data/%s_data/centrality_measures/' % dataset_id
data = np.loadtxt(data_path, delimiter=' ', dtype='i')
print('%s dataset were loaded.' % dataset_id)
print('Number of edges in data: %i.' % len(data))
print(data[:5])
# ## a.) exclude early information
selector = data[:,0] >= min_epoch
data = data[selector,:]
print('Number of edges in data after excluding edges below epoch %i: %i.' % (min_epoch,len(data)))
# ## b.) preprocessing nodes and edges
src_unique = np.unique(data[:,1])
trg_unique = np.unique(data[:,2])
nodes = np.unique(np.concatenate((src_unique,trg_unique)))
edges = [link2str(link) for link in data[:,1:3].tolist()] # element must be string to be hashable
print(len(nodes), len(edges))
print(edges[:3])
# # 3. Compute online centraliy measures
# ## a.) Setting parameters
tk_params, ttk_params, tpr_params, pr_params, indeg_params, nbm_params, hc_params = [], [], [], [], [], [], []
gsim_params = []
# ### Testing just a few parameters (fine parameter testing takes a lot of time)
norm_factors = []
norm_factors += [3600.0 * i for i in [1,2,3,4,6,8,10,12,24]]
print(norm_factors)
if delta == 3600:
static_lookbacks = [1,2,3,4,6,8,10,12,24]
else:
static_lookbacks = [0, 1, 2, 4, 7, 14, 21, 30]
# ### Select parameters for TemporalKatzComputer
tk_beta = 1.0 # choose beta for temporal Katz centrality
tk_params = []
tk_params += [tkc.TemporalKatzParams(tk_beta,wf.ExponentialWeighter(base=0.5,norm=n)) for n in norm_factors]
if len(tk_params) > 0:
gsim_params.append(tkc.TemporalKatzComputer(nodes,tk_params))
# ### Select parameters for TruncatedTemporalKatzComputer
ttk_params = []
ttk_params += [tkc.TruncatedTemporalKatzParams(tk_beta,wf.ExponentialWeighter(base=0.5,norm=n)) for n in norm_factors]
if len(ttk_params) > 0:
gsim_params.append(tkc.TruncatedTemporalKatzComputer(nodes,ttk_params,k=5))
# ### Select parameters for TemporalPageRankComputer
tpr_params += [tprc.TemporalPageRankParams(0.85,b) for b in [0.001,0.01,0.05,0.1,0.3,0.5,0.9]]
if len(tpr_params) > 0:
gsim_params.append(tprc.TemporalPageRankComputer(nodes,tpr_params))
# ### Select parameters for StaticPageRankComputer
pr_params += [sprc.StaticPageRankParams(lookback_cnt=l,alpha=0.85,max_iter=100) for l in static_lookbacks]
if len(pr_params) > 0:
gsim_params.append(sprc.StaticPageRankComputer(pr_params))
# ### Select parameters for StaticIndegreeComputer
indeg_params += [sidc.StaticIndegreeParams(lookback_cnt=l) for l in static_lookbacks]
if len(indeg_params) > 0:
gsim_params.append(sidc.StaticIndegreeComputer(indeg_params))
# ### Select parameters for StaticNegativeBetaMeasureComputer
nbm_params += [snbmc.StaticNegativeBetaMeasureParams(lookback_cnt=l) for l in static_lookbacks]
if len(nbm_params) > 0:
gsim_params.append(snbmc.StaticNegativeBetaMeasureComputer(nbm_params))
# ### Select parameters for StaticHarmonicCentralityComputer
#exclude computation on the total graph
for l in static_lookbacks:
if l == 0:
continue
else:
hc_params.append(shcc.StaticHarmonicCentralityParams(lookback_cnt=l))
if len(hc_params) > 0:
gsim_params.append(shcc.StaticHarmonicCentralityComputer(hc_params))
# ### Select parameters for OnlineIndegreeComputer
did_params = []
did_params += [dic.DecayedIndegreeParams(wf.ExponentialWeighter(base=0.5,norm=n)) for n in norm_factors]
gsim_params.append(dic.DecayedIndegreeComputer(nodes,edges,did_params,min_time=min_epoch))
# ## b.) Compute all online scores with one graph simulation
boundaries = min_epoch + np.array([delta*i for i in range(1,index_threshold+1)])
gsim_obj = gsim.OnlineGraphSimulator(data, time_type="epoch", verbose=True)
nexperiment_graph_stats = gsim_obj.run_with_boundaries(gsim_params,boundaries,score_output_dir,max_index=index_threshold)
print("Done")