-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
325 lines (258 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from __future__ import division
from __future__ import print_function
import random
import time
import argparse
import pickle
import os
import datetime
import torch.optim as optim
from torch.optim import lr_scheduler
from utils import *
from models import *
from scipy.stats import pearsonr
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--epochs', type=int, default=300,
help='Number of epochs to train.')
parser.add_argument('--batch-size', type=int, default=64,
help='Number of samples per batch.')
parser.add_argument('--lr', type=float, default=0.0007,
help='Initial learning rate.')
parser.add_argument("--lr-decay", type=int, default=200,
help="lr decay steps.")
parser.add_argument("--gamma", type=float, default=0.5,
help="LR decay factor.")
parser.add_argument("--teach-max", type=float, default=1.,
help="Initial teacher forcing rate.")
parser.add_argument("--teach-min", type=float, default=0.,
help="Final teacher forcing rate.")
parser.add_argument("--teach-steps", type=int, default=200,
help="Teacher Forcing steps.")
parser.add_argument("--dim", type=int, default=1,
help="dimension of time series.")
parser.add_argument("--d-model", type=int, default=128,
help="dimension of transformer attention.")
parser.add_argument("--dim-feedforward", type=int, default=128,
help="dimension of transformer feedforward net.")
parser.add_argument("--nhead", type=int, default=4,
help="number of heads of attention.")
parser.add_argument("--num-enlayers", type=int, default=4,
help="number of transformer encoder layers.")
parser.add_argument("--num-delayers", type=int, default=4,
help="number of transformer decoder layers.")
parser.add_argument("--dropout", type=float, default=0.2,
help="dropout rate.")
parser.add_argument("--max-len", type=int, default=15,
help="maximal length of time series.")
parser.add_argument("--test-part", type=int, default=2,
help="test part.")
parser.add_argument("--training-steps", type=int, default=10,
help="time steps used for training (observed steps).")
parser.add_argument("--save-folder", type=str, default="logs",
help="Where to save the trained model.")
parser.add_argument("--load-folder", type=str, default='',
help="where to load the trained model.")
parser.add_argument("--use-conv", action="store_true", default=False,
help="use conv transformers.")
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
# Save model and meta-data. Always saves in a new sub-folder.
if args.save_folder:
exp_counter = 0
now = datetime.datetime.now()
timestamp = now.isoformat()
save_folder = '{}/exp{}/'.format(args.save_folder, timestamp)
os.mkdir(save_folder)
meta_file = os.path.join(save_folder, 'metadata.pkl')
encoder_file = os.path.join(save_folder, 'encoder.pt')
decoder_file = os.path.join(save_folder, 'decoder.pt')
log_file = os.path.join(save_folder, 'log.txt')
log = open(log_file, 'w')
pickle.dump({'args': args}, open(meta_file, "wb"))
else:
print("WARNING: No save_folder provided!" +
"Testing (within this script) will throw an error.")
train_loader, valid_loader, test_loader, train_max, train_min = load_data_ili(training_steps=args.training_steps,
test_part=args.test_part,
batch_size=args.batch_size)
if args.use_conv:
encoder = TimeSeriesConvTransEncoder(n_in=args.dim, d_model=args.d_model,
dim_feedforward=args.dim_feedforward, nhead=args.nhead,
num_enlayers=args.num_enlayers, dropout=args.dropout, max_len=args.max_len,
kernel_size=3, dilation=1, causal=False)
decoder = TimeSeriesConvTransDecoder(n_in=args.dim, d_model=args.d_model,
dim_feedforward=args.dim_feedforward, nhead=args.nhead,
num_delayers=args.num_delayers, dropout=args.dropout, max_len=args.max_len,
kernel_size=3, dilation=1, causal_src=False, causel_tgt=True)
else:
encoder = TimeSeriesEncoder(n_in=args.dim, d_model=args.d_model, dim_feedforward=args.dim_feedforward,
nhead=args.nhead, num_enlayers=args.num_enlayers, dropout=args.dropout,
max_len=args.max_len)
decoder = TimeSeriesDecoder(n_in=args.dim, d_model=args.d_model, dim_feedforward=args.dim_feedforward,
nhead=args.nhead, num_delayers=args.num_delayers, dropout=args.dropout,
max_len=args.max_len)
if args.load_folder:
encoder_file = os.path.join(args.load_folder, 'encoder.pt')
encoder.load_state_dict(torch.load(encoder_file))
decoder_file = os.path.join(args.load_folder, 'decoder.pt')
decoder.load_state_dict(torch.load(decoder_file))
args.save_folder = False
optimizer = optim.Adam(list(encoder.parameters()) + list(decoder.parameters()),
lr=args.lr)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.lr_decay,
gamma=args.gamma)
if args.cuda:
encoder.cuda()
decoder.cuda()
def train(epoch, best_val_loss, teach_rate):
t = time.time()
mse_train = []
mse_val = []
encoder.train()
decoder.train()
for batch_idx, (x, y) in enumerate(train_loader):
if args.cuda:
x, y = x.cuda(), y.cuda()
x, y = x.permute(1,0,2), y.permute(1,0,2)
#shape: [seq_len, n_batch, dim]
optimizer.zero_grad()
memory = encoder(x)
teacher_forcing = (random.random() < teach_rate)
if teacher_forcing:
# training with teacher forcing (given previous ground truth input)
x_last = x[-1:,:,:]
x_de = torch.cat([x_last, y[:-1,:,:]], dim=0)
tgt_mask = torch.zeros(x_de.size(0), x_de.size(0))-torch.inf
tgt_mask = torch.triu(tgt_mask, diagonal=1)
if args.cuda:
tgt_mask = tgt_mask.cuda()
y_predict = decoder(x_de, memory, tgt_mask)
else:
seq_target = y.size(0)
x_de = x[-1:,:,:]
predicts = []
for i in range(seq_target):
seq_de = x_de.size(0)
if seq_de > 1:
tgt_mask = torch.zeros(seq_de, seq_de)-torch.inf
tgt_mask = torch.triu(tgt_mask, diagonal=1)
if args.cuda: tgt_mask = tgt_mask.cuda()
else: tgt_mask = None
x_de_next = decoder(x_de, memory, tgt_mask)
predicts.append(x_de_next[-1:,:,:])
x_de = torch.cat([x_de, x_de_next[-1:,:,:]], dim=0)
#y_predict = torch.cat(predicts, dim=0)
y_predict = x_de_next
loss = F.mse_loss(y_predict, y)
loss.backward()
optimizer.step()
scheduler.step()
mse_train.append(loss.item())
encoder.eval()
decoder.eval()
with torch.no_grad():
for batch_idx, (x, y) in enumerate(valid_loader):
if args.cuda:
x, y = x.cuda(), y.cuda()
x, y = x.permute(1,0,2), y.permute(1,0,2)
#shape: [seq_len, n_batch, dim]
memory = encoder(x)
seq_target = y.size(0)
x_de = x[-1:,:,:]
predicts = []
for i in range(seq_target):
seq_de = x_de.size(0)
if seq_de > 1:
tgt_mask = torch.zeros(seq_de, seq_de)-torch.inf
tgt_mask = torch.triu(tgt_mask, diagonal=1)
if args.cuda: tgt_mask = tgt_mask.cuda()
else: tgt_mask = None
x_de_next = decoder(x_de, memory, tgt_mask)
predicts.append(x_de_next[-1:,:,:])
x_de = torch.cat([x_de, x_de_next[-1:,:,:]], dim=0)
#y_predict = torch.cat(predicts, dim=0)
y_predict = x_de_next
loss = F.mse_loss(y_predict, y)
mse_val.append(loss.item())
print("Epoch: {:04d}".format(epoch+1),
"mse_train: {:.10f}".format(np.mean(mse_train)),
"mse_val: {:.10f}".format(np.mean(mse_val)),
"teach_rate: {:.10f}".format(teach_rate))
if args.save_folder and np.mean(mse_val) < best_val_loss:
torch.save(encoder, encoder_file)
torch.save(decoder, decoder_file)
print("Best model so far, saving...")
print("Epoch: {:04d}".format(epoch+1),
"mse_train: {:.10f}".format(np.mean(mse_train)),
"mse_val: {:.10f}".format(np.mean(mse_val)),
"teach_rate: {:.10f}".format(teach_rate), file=log)
log.flush()
return np.mean(mse_val)
def test():
mse_test = []
mse_test_real = []
pearson_real = []
encoder = torch.load(encoder_file)
decoder = torch.load(decoder_file)
encoder.eval()
decoder.eval()
with torch.no_grad():
for batch_idx, (x,y) in enumerate(test_loader):
if args.cuda:
x, y = x.cuda(), y.cuda()
x, y = x.permute(1,0,2), y.permute(1,0,2)
#shape: [seq_len, n_batch, dim]
x_real, y_real = (train_max-train_min)*x+train_min, (train_max-train_min)*y+train_min
memory = encoder(x)
seq_target = y.size(0)
x_de = x[-1:,:,:]
predicts = []
for i in range(seq_target):
seq_de = x_de.size(0)
if seq_de > 1:
tgt_mask = torch.zeros(seq_de, seq_de)-torch.inf
tgt_mask = torch.triu(tgt_mask, diagonal=1)
if args.cuda: tgt_mask = tgt_mask.cuda()
else: tgt_mask = None
x_de_next = decoder(x_de, memory, tgt_mask)
predicts.append(x_de_next[-1:,:,:])
x_de = torch.cat([x_de, x_de_next[-1:,:,:]], dim=0)
#y_predict = torch.cat(predicts, dim=0)
y_predict = x_de_next
y_predict_real = (train_max-train_min)*y_predict+train_min
loss = F.mse_loss(y_predict, y)
loss_real = F.mse_loss(y_predict_real, y_real)
mse_test.append(loss.item())
mse_test_real.append(loss_real.item())
y_predict_numpy = y_predict_real.cpu().squeeze().numpy()
y_numpy = y_real.cpu().squeeze().numpy()
pc, _ = pearsonr(y_predict_numpy, y_numpy)
pearson_real.append(pc)
print('--------------------------------')
print('--------Testing-----------------')
print('--------------------------------')
print("mse_test: {:.10f}".format(np.mean(mse_test)),
"real mse_test: {:.10f}".format(np.mean(mse_test_real)),
"real pearson correlation: {:.10f}".format(np.mean(pearson_real)))
#train model
t_total = time.time()
best_val_loss = np.inf
best_epoch = 0
teach_rate = args.teach_max
teach_delta = (args.teach_max-args.teach_min)/args.teach_steps
for epoch in range(args.epochs):
val_loss = train(epoch, best_val_loss, teach_rate)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_epoch=epoch
teach_rate= max(teach_rate-teach_delta, args.teach_min)
print("Optimization Finished!")
print("Best Epoch: {:04d}".format(best_epoch+1))
if args.save_folder:
print("Best Epoch: {:04d}".format(best_epoch), file=log)
log.flush()
test()
log.close()