-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathparam.py
79 lines (76 loc) · 2.69 KB
/
param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import random
import torch
import numpy as np
random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
np.random.seed(0)
settings = {
'model':{
'baseline': {
'random': {
'b': 128
},
'fnn':{
'l': [100], # list of number of nodes in each layer
'lr': 0.001, # learning rate
'b': 128, # batch size
'e': 10, # epoch
'nns': 3, # number of negative samples
'ns': 'none', # 'none', 'uniform', 'unigram', 'unigram_b'
'loss': 'SL', # 'SL'-> superloss, 'DP' -> Data Parameters, 'normal' -> Binary Cross Entropy
},
'bnn':{
'l': [128], # list of number of nodes in each layer
'lr': 0.1, # learning rate
'b': 128, # batch size
'e': 5, # epoch
'nns': 3, # number of negative samples
'ns': 'unigram_b', # 'uniform', 'unigram', 'unigram_b'
's': 1, # # sample_elbo for bnn
'loss': 'SL', # 'SL'-> superloss, 'DP' -> Data Parameters, 'normal' -> Binary Cross Entropy
},
'nmt': {
'base_config': './mdl/nmt_config.yaml'
},
'caser': {},
'rrn': {
'with_zero': True
},
'emb':{
'd': 100,# embedding dimension
'e': 100,# epoch
'dm': 1,# training algorithm. 1: distributed memory (PV-DM), 0: distributed bag of words (PV-DBOW)
'w': 1 #cooccurrence window
}
},
'cmd': ['train', 'test', 'eval'], # 'train', 'test', 'eval', 'plot', 'agg', 'fair'
'nfolds': 3,
'train_test_split': 0.85,
'step_ahead': 2,#for now, it means that whatever are in the last [step_ahead] time interval will be the test set!
},
'data':{
'domain': {
'dblp':{},
'uspt':{},
'imdb':{},
},
'location_type': 'country', #should be one of 'city', 'state', 'country' and represents the location of members in teams (not the location of teams)
'filter': {
'min_nteam': 5,
'min_team_size': 2,
},
'parallel': 1,
'ncore': 0,# <= 0 for all
'bucket_size': 1000
},
'fair': {'np_ratio': None,
'fairness': ['det_greedy',],
'k_max': None,
'fairness_metrics': {'ndkl'},
'utility_metrics': {'map_cut_2,5,10'},
'eq_op': False,
'mode': 0,
'core': -1,
'attribute': ['gender', 'popularity']},
}