Skip to content

Latest commit

 

History

History
216 lines (193 loc) · 6.94 KB

Lottery.md

File metadata and controls

216 lines (193 loc) · 6.94 KB

Expected Value

Vacuum expected value of the universe is I meant what could we expect from the VACCUM? HOW much force it needs to generate to keep itself empty?

Do the odds stack up?

(1) 修正後的用文的句子:
Do the odds stack up?

(2) 中文:
概率是否堆疊起來?

(3) 粤语:
機率会唔会叠埋嚟?

(4) 台語:
機率有加起來無?

(5) 正式英文:
Do the probabilities accumulate in a favorable manner?

(6) Español (Spanish):
¿Se acumulan las probabilidades?

(7) 文言文:
機數可曾相疊乎?

(8) 日本語 (Japanese):
確率は積み重なっていますか?

(9) 한국어 (Korean):
확률이 쌓이고 있습니까?

(10) Kreyòl (Haitian):
Èske chans yo ap akimile?

(11) Italiano (Italian):
Si accumulano le probabilità?

(12) Prolog:

% Prolog representation
odds_stack_up :- write('The odds stack up?').

(13) Coq:

(* Coq representation *)
Definition odds_stack_up : Prop := True.

(14) Mathematical study of the subject of the prompt:
Consider a set of independent events with probabilities p₁, p₂, p₃, ... . The question "Do the odds stack up?" can be interpreted as asking whether the cumulative probability of at least one event occurring increases as more events are considered. If we define each event’s probability as pᵢ, the probability that at least one event occurs is 1 - ∏(1 - pᵢ). As we include more events (assuming none are certain), this overall probability tends to increase. Thus, mathematically, the odds can be said to "stack up" as you aggregate multiple probabilistic opportunities.

(15) VB.NET:

' VB.NET representation
Dim probabilities() As Double = {0.1, 0.2, 0.3}
Dim cumulativeOdds As Double = 1.0
For Each p In probabilities
    cumulativeOdds *= (1 - p)
Next
Dim finalProbability As Double = 1 - cumulativeOdds
Console.WriteLine("Do the odds stack up? Probability: " & finalProbability.ToString("F2"))

(16) Open Questions:

  • In what context are we referring to the odds stacking up?
  • Are these odds associated with independent or dependent events?
  • How does correlation between events affect the cumulative probability?
  • How do we quantify “stacking up” precisely in different domains (e.g., gambling, risk assessment, statistical inference)?

SourceLinks:


時間點:
生成時間:2024-12-14

Prompt生成時間:
2024-12-14

RSS格式:

<rss version="2.0">
<channel>
<title>Do the odds stack up?</title>
<description>Translations and representations of the corrected sentence 'Do the odds stack up?'</description>
<link>http://example.com</link>
<item>
<title>Corrected English Sentence</title>
<description>Do the odds stack up?</description>
</item>
<item>
<title>中文</title>
<description>概率是否堆疊起來?</description>
</item>
<item>
<title>粤语</title>
<description>機率会唔会叠埋嚟?</description>
</item>
<item>
<title>台語</title>
<description>機率有加起來無?</description>
</item>
<item>
<title>正式英文</title>
<description>Do the probabilities accumulate in a favorable manner?</description>
</item>
<item>
<title>Español</title>
<description>¿Se acumulan las probabilidades?</description>
</item>
<item>
<title>文言文</title>
<description>機數可曾相疊乎?</description>
</item>
<item>
<title>日本語</title>
<description>確率は積み重なっていますか?</description>
</item>
<item>
<title>한국어</title>
<description>확률이 쌓이고 있습니까?</description>
</item>
<item>
<title>Kreyòl</title>
<description>Èske chans yo ap akimile?</description>
</item>
<item>
<title>Italiano</title>
<description>Si accumulano le probabilità?</description>
</item>
<item>
<title>Prolog</title>
<description>odds_stack_up :- write('The odds stack up?').</description>
</item>
<item>
<title>Coq</title>
<description>Definition odds_stack_up : Prop := True.</description>
</item>
<item>
<title>Mathematical Study</title>
<description>As more independent events are considered, the probability of at least one occurring (1 - ∏(1 - pᵢ)) increases, meaning the odds do stack up.</description>
</item>
<item>
<title>VB.NET</title>
<description>Code snippet provided.</description>
</item>
<item>
<title>Open Questions</title>
<description>Questions about independence, correlation, and domain relevance.</description>
</item>
<item>
<title>SourceLinks</title>
<description>
<![CDATA[
<ul>
<li><a href="https://en.wikipedia.org/wiki/Probability">Understanding Probability</a></li>
<li><a href="https://www.khanacademy.org/math/statistics-probability/probability-library">Cumulative Probability Concepts</a></li>
</ul>
]]>
</description>
</item>
<pubDate>2024-12-14</pubDate>
</channel>
</rss>

XML格式:

<response>
  <corrected_sentence>Do the odds stack up?</corrected_sentence>
  <chinese>概率是否堆疊起來?</chinese>
  <cantonese>機率会唔会叠埋嚟?</cantonese>
  <taiwanese>機率有加起來無?</taiwanese>
  <formal_english>Do the probabilities accumulate in a favorable manner?</formal_english>
  <spanish>¿Se acumulan las probabilidades?</spanish>
  <classical_chinese>機數可曾相疊乎?</classical_chinese>
  <japanese>確率は積み重なっていますか?</japanese>
  <korean>확률이 쌓이고 있습니까?</korean>
  <haitian>Èske chans yo ap akimile?</haitian>
  <italian>Si accumulano le probabilità?</italian>
  <prolog_code>odds_stack_up :- write('The odds stack up?').</prolog_code>
  <coq_code>Definition odds_stack_up : Prop := True.</coq_code>
  <mathematical_study>
    Consider a set of independent events with probabilities p₁, p₂, p₃, ...
    The combined probability of at least one event occurring is 1 - ∏(1 - pᵢ).
    As we add more events, this probability increases, meaning the odds do indeed "stack up."
  </mathematical_study>
  <vbnet_code>
    <![CDATA[
    Dim probabilities() As Double = {0.1, 0.2, 0.3}
    Dim cumulativeOdds As Double = 1.0
    For Each p In probabilities
        cumulativeOdds *= (1 - p)
    Next
    Dim finalProbability As Double = 1 - cumulativeOdds
    Console.WriteLine("Do the odds stack up? Probability: " & finalProbability.ToString("F2"))
    ]]>
  </vbnet_code>
  <open_questions>
    <question>Are these events independent or dependent?</question>
    <question>How to factor in correlation?</question>
    <question>What domain-specific contexts apply?</question>
  </open_questions>
  <source_links>
    <link>https://en.wikipedia.org/wiki/Probability</link>
    <link>https://www.khanacademy.org/math/statistics-probability/probability-library</link>
  </source_links>
  <timestamp>2024-12-14</timestamp>
  <prompt_generated_time>2024-12-14</prompt_generated_time>
</response>