-
Notifications
You must be signed in to change notification settings - Fork 73
/
config_full.yml
222 lines (157 loc) · 6.17 KB
/
config_full.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
## Synthetic population pipeline for Île-de-France
## based on the synpp package
# This is the path to a directory where the pipeline can store temporary data
working_directory: cache
# This section defines which parts of the pipeline should be run
run:
- synthesis.output # To create the output population in the output_path (see below)
#- matsim.output # Uncomment, if you want to run the full simulation (you'll need Java for that)
# Here the configuraiton of the pipeline starts
config:
##############################
# Some general configuration #
##############################
## Number of CPUs to use
processes: 4
################
# Random seeds #
################
## global random seed for the output population
random_seed: 1234
## bpe specific random seed when impute missing coordinates for known IRIS
# bpe_random_seed: 0
##################################################
# Define sampling rate for the output population #
##################################################
sampling_rate: 0.001
#################################
# household travel survey (HTS) #
#################################
## Define whether to use ENTD or EGT as the HTS
hts: entd # entd, egt, edgt_lyon, edgt_44
## Whether to filter people going outside of the area and other filters
# filter_hts: true
## if selected, chose the source for edgt_lyon
# edgt_lyon_source: unchosen # unchosen, adisp, cerema
##################
# Zone selection #
##################
## select regions by region_id
# regions: [11]
## select departments by department_id
# departments: []
#######################
# Output paths #
#######################
## output folder
output_path: output
## output prefix, appended to file names
# output_prefix: ile_de_france_
## file formats that should be exported
# output_formats: ["csv", "gpkg"] # ["csv", "gpkg", "parquet", "geoparquet"]
##############################
# Algorithms configurations #
##############################
## Use the bhepop2 package for attributing income
# income_assignation_method: bhepop2 # uniform, bhepop2
## Activate if you want to run mode choice, will assign a mode to output trips
mode_choice: true
## Statistical matching configuration
## Minimum number of observation to sample from
# matching_minimum_observations: 20
## list of attributes to use for matching
# matching_attributes: ["sex", "any_cars", "age_class", "socioprofessional_class", "departement_id"]
## Use INSEE's urban type in statistical matching
# use_urban_type: true
# urban_type_path: urban_type/UU2020_au_01-01-2023.zip
# matching_attributes: ["urban_type", "*default*"]
## Exclude entreprise without any employee (trancheEffectifsEtablissement is NA, "NN" or "00")
# exclude_no_employee: true
## source for the education locations
# education_location_source: bpe # bpe, addresses
## max iterations for the secondary location selection algorithm
# secloc_maximum_iterations: np.inf
## Buffer arround buildings to capture adresses in their vicinity
# home_address_buffer: 5.0
## How sample homes, using weights or not
# home_location_weight: housing # "uniform", "housing"
# home_location_source: addresses # "addresses", "buildings", "tiles"
## When running matsim
## performing one run of the matsim simulation or not
# run_matsim: true
## creating the far or not
# write_jar: true
############################
# Analysis configuration #
############################
## Whether to use previously generated files or not
# analysis_from_file: false
## prefix of the files to compare to
# comparison_file_prefix: other_
##########################
# Tools configuration #
##########################
## Mostly interesting if you run the simulation, or you activate the `mode_choice` option,
## Binaries paths
# git_binary: git
# osmosis_binary: osmosis
# java_binary: java
# maven_binary: mvn
## Binaries parameters
# java_memory: 14G
# maven_skip_tests: false
## eqasim-java parameters
# eqasim_version: 1.5.0
# eqasim_branch: develop
# eqasim_commit: ece4932
# eqasim_repository: https://github.com/eqasim-org/eqasim-java.git
# eqasim_path: ""
## pt2matsim parameters
# pt2matsim_version: 22.3
# pt2matsim_branch: v22.3
## Strategy to use in pt2matsim gtfs processing
# gtfs_date: dayWithMostServices
## Export the detailed geometry of the network before simplification in pt2matsim
# export_detailed_network: true
#################
# Input paths #
#################
## Absolute root path of all input data
data_path: /path/to/my/data
# census_path: rp_2019/RP2019_INDCVI_csv.zip
# census_csv: FD_INDCVI_2019.csv
# ban_path: ban_idf
# bdtopo_path: bdtopo_idf
# bpe_path: bpe_2021/bpe21_ensemble_xy_csv.zip
# bpe_csv: bpe21_ensemble_xy.csv
# gtfs_path: gtfs_idf
# income_com_path: filosofi_2019/indic-struct-distrib-revenu-2019-COMMUNES.zip
# income_com_xlsx: FILO2019_DISP_COM.xlsx
# income_reg_path: filosofi_2019/indic-struct-distrib-revenu-2019-SUPRA.zip
# income_reg_xlsx: FILO2019_DISP_REG.xlsx
# income_year: 19
# tiles_path: tiles_2019/Filosofi2019_carreaux_200m_gpkg.zip
# tiles_file: carreaux_200m_met.gpkg
# od_pro_path: rp_2019/RP2019_MOBPRO_csv.zip
# od_sco_path: rp_2019/RP2019_MOBSCO_csv.zip
# od_pro_csv: FD_MOBPRO_2019.csv
# od_sco_csv: FD_MOBSCO_2019.csv
## external education locations file
# education_file: education/education_addresses.geojson
# osm_path: osm_idf
# osm_highways: "*"
# osm_railways: "*"
# siren_path: sirene/StockUniteLegale_utf8.zip
# siret_path: sirene/StockEtablissement_utf8.zip
# siret_geo_path: sirene/GeolocalisationEtablissement_Sirene_pour_etudes_statistiques_utf8.zip
# iris_path: iris_2021
# population_path: rp_2019/base-ic-evol-struct-pop-2019.zip
# population_xlsx: base-ic-evol-struct-pop-2019.xlsx
# population_year: 19
## population projections
# projection_path: projection_2021
# projection_scenario: 00_central
# projection_year: 2030
# vehicles_method: default # fleet_sample, default
# vehicles_path: vehicles
# vehicles_year: 2021