-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
187 lines (153 loc) · 5.47 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import pickle
import random
import time
# PyTorch model and training necessities
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
# Image datasets and image manipulation
import torchvision
import torchvision.transforms as transforms
# Image display
import matplotlib.pyplot as plt
import numpy as np
# PyTorch TensorBoard support
from torch.utils.tensorboard import SummaryWriter
import board
board_size = 5
win_len = 4
board_size_str = f"{win_len}_{board_size}x{board_size}"
board_db_file = f"board_{board_size_str}.db"
checkpoint_file = f"checkpoint_{board_size_str}"
tensorboard_file = f"runs/tic_tac_toe_{board_size_str}"
class Model(nn.Module):
# square boards only
def __init__(self, board_size) -> None:
super().__init__()
size = board_size * board_size
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(size, size * size, dtype=torch.float32)
self.linear2 = nn.Linear(size * size, size, dtype=torch.float32)
self.linear3 = nn.Linear(size, 1, dtype=torch.float32)
def forward(self, x):
x = self.flatten(x)
x = torch.relu(self.linear1(x))
x = torch.relu(self.linear2(x))
x = torch.sigmoid(self.linear3(x))
return x
def train():
writer = SummaryWriter(tensorboard_file)
device = torch.device("cpu")
model = Model(board_size).to(device)
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
print("Calculating all boards...")
try:
with open(board_db_file, "rb") as fp:
db = pickle.load(fp)
except:
db = board.minimax(win_len, board_size, board_size)
with open(board_db_file, "wb") as fp:
pickle.dump(db, fp)
print("Loading model...")
try:
checkpoint = torch.load(checkpoint_file)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
epoch = checkpoint["epoch"]
except:
epoch = 0
def save():
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"epoch": epoch,
"win_len": win_len,
"board_size": board_size,
},
checkpoint_file,
)
print("Training started")
iters = 0
for epoch in range(epoch, epoch + 30_000):
running_loss = 0.0
cur_board = torch.zeros(board_size, board_size, dtype=torch.float32)
next_boards = board.generate_boards(cur_board, 1)
while len(next_boards) > 0:
for b in next_boards:
iters += 1
expected = torch.tensor(
[[db[str(b)]]],
dtype=torch.float32,
device=device,
)
b = torch.unsqueeze(b, 0).to(device)
optimizer.zero_grad()
outputs = model(b)
loss = criterion(outputs, expected)
loss.backward()
optimizer.step()
running_loss += loss.item()
# now make a random move, check if game over
# then, make a random opponent move
cur_board = random.choice(next_boards)
if board.is_winner(cur_board, 1, board_size) or board.is_tie(cur_board):
break
next_boards = board.generate_boards(cur_board, -1)
if 0 == len(next_boards):
break
cur_board = random.choice(next_boards)
if board.is_winner(cur_board, -1, board_size) or board.is_tie(cur_board):
break
next_boards = board.generate_boards(cur_board, 1)
if epoch % 100 == 99:
save()
running_loss /= 100
writer.add_scalar("training_loss", running_loss, epoch)
print(f"[{epoch + 1}, {iters + 1:5d}] loss: {running_loss:.3f}")
running_loss = 0.0
print(f"finished after {iters} iterations")
save()
def _eval(db, model, board_size):
cur_board = torch.zeros(board_size, board_size, dtype=torch.float32)
print(cur_board)
error = 0
predicted = model(cur_board.unsqueeze(0)).item()
actual = db[str(cur_board)]
error += abs(predicted - actual)
print(f"predicted: {predicted}, actual: {actual}, error: {error}")
cur_board[0][0] = 1
cur_board[0][1] = -1
print(cur_board)
predicted = model(cur_board.unsqueeze(0)).item()
actual = db[str(cur_board)]
error += abs(predicted - actual)
print(f"predicted: {predicted}, actual: {actual}, error: {error}")
cur_board[0][0] = -1
cur_board[0][1] = 1
cur_board[1][1] = 1
cur_board[1][2] = 1
cur_board[2][2] = -1
cur_board[2][3] = -1
print(cur_board)
predicted = model(cur_board.unsqueeze(0)).item()
actual = db[str(cur_board)]
error += abs(predicted - actual)
print(f"predicted: {predicted}, actual: {actual}, error: {error}")
return error / 3
def eval():
with open(board_db_file, "rb") as fp:
db = pickle.load(fp)
model = Model(board_size)
error = _eval(db, model, board_size)
print(f"RANDOM MODEL ERROR: {error}")
checkpoint = torch.load(checkpoint_file)
model.load_state_dict(checkpoint["model_state_dict"])
error = _eval(db, model, board_size)
print(f"TRAINED MODEL ERROR: {error}")
if __name__ == "__main__":
random.seed(time.time())
train()
eval()