-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathResNet.py
63 lines (53 loc) · 2.34 KB
/
ResNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from torch import nn
class ResNet(nn.Module):
def __init__(self, catFeatures=None, sizeEmbedding=128, sizeHidden=128, numLayers=4,
hiddenFactor=2, activation=nn.ReLU(), normalization=nn.BatchNorm1d, hiddenDropout=None,
residualDropout=None, dimOut=1, num_numerical_features=0):
super(ResNet, self).__init__()
self.embedding = nn.EmbeddingBag(num_embeddings=catFeatures + 1, embedding_dim=sizeEmbedding,
padding_idx=1)
self.first_layer = nn.Linear(sizeEmbedding + num_numerical_features, sizeHidden)
res_hidden = sizeHidden * hiddenFactor
self.layers = nn.ModuleList(ResidualLayer(sizeHidden, res_hidden, normalization,
activation, hiddenDropout, residualDropout)
for _ in range(numLayers))
self.last_norm = normalization(sizeHidden)
self.head = nn.Linear(sizeHidden, dimOut)
self.last_act = activation
def forward(self, input):
cat_input = self.embedding(input+1)
x = cat_input
x = self.first_layer(x)
for layer in self.layers:
x = layer(x)
x = self.last_norm(x)
x = self.last_act(x)
x = self.head(x)
x = x.squeeze(-1)
return x
class ResidualLayer(nn.Module):
def __init__(self, size_hidden, res_hidden, normalization, activation,
hiddenDropout=None, residualDropout=None):
super(ResidualLayer, self).__init__()
self.norm = normalization(size_hidden)
self.linear0 = nn.Linear(size_hidden, res_hidden)
self.linear1 = nn.Linear(res_hidden, size_hidden)
self.activation = activation
self.hidden_dropout = hiddenDropout
self.residual_dropout = residualDropout
if hiddenDropout:
self.hidden_dropout = nn.Dropout(p=hiddenDropout)
if residualDropout:
self.residual_dropout = nn.Dropout(p=residualDropout)
def forward(self, input):
z = input
z = self.norm(z)
z = self.linear0(z)
z = self.activation(z)
if self.hidden_dropout:
z = self.hidden_dropout(z)
z = self.linear1(z)
if self.residual_dropout:
z = self.residual_dropout(z)
z = z + input
return z