-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEstimator.py
145 lines (118 loc) · 5.24 KB
/
Estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import pathlib
import time
import numpy as np
import torch
from torch import nn
from torch.nn.utils import clip_grad_norm_
from torch.utils.data import DataLoader, BatchSampler, RandomSampler, SequentialSampler
from tqdm import tqdm
class Estimator:
"""
A class that wraps around pytorch models. Using this class I can quickly add pytorch models without
having to write much code.
"""
def __init__(self, model, model_parameters, fit_parameters,
optimizer=torch.optim.Adam, scheduler=torch.optim.lr_scheduler.ReduceLROnPlateau,
criterion=nn.BCEWithLogitsLoss(), device='cpu'):
"""
Parameters
----------
model : nn.Module A pytorch model with a forward or __call__ method
model_parameters : dict The parameters to pass on to the pytorch model
fit_parameters : dict The parameters for the estimator
optimizer : A pytorch optimizer, defaults to AdamW
scheduler : A pytorch learning rate scheduler, default is reduce on plateau
criterion : A pytorch loss function, default is BCEWithLogitsLoss
device : Device to use, either 'cpu' or 'cuda:x' where x is number of gpu
"""
self.model = model(**model_parameters)
self.model_parameters = model_parameters
self.fit_parameters = fit_parameters
self.epochs = fit_parameters.get('epochs', 5)
self.learning_rate = fit_parameters.get('lr', 3e-4)
self.weight_decay = fit_parameters.get('weight_decay', 1e-5)
self.results_dir = pathlib.Path(fit_parameters.get('results_dir', './results'))
self.prefix = fit_parameters.get('prefix', 'Model')
self.previous_epochs = fit_parameters.get('previous_epochs', 0)
self.device = device
self.model.to(device)
self.optimizer = optimizer(params=self.model.parameters(),
lr=self.learning_rate,
weight_decay=self.weight_decay)
self.criterion = criterion
self.criterion.to(device)
self.batch_size = fit_parameters['batch_size']
def fit(self, dataset):
"""
Function that fit's a model to data loaded with a pytorch dataloader. It uses early stopping with data
loaded with test_dataloader
Parameters
----------
dataset : A pytorch dataset
test_dataset : the validation set
trial : optuna trial instance, used for pruning
Returns
-------
self : Returns itself so I can chain together operations like fit().score()
"""
sampler = BatchSampler(RandomSampler(data_source=dataset), batch_size=self.batch_size, drop_last=False)
dataloader = DataLoader(dataset=dataset, sampler=sampler, batch_size=None)
times = []
for epoch in range(self.epochs):
start = time.time()
loss = self.fit_epoch(dataloader)
delta = time.time() - start
current_epoch = epoch + 1 + self.previous_epochs
lr = self.optimizer.param_groups[0]["lr"]
print(
f'Epochs: {current_epoch} | Train loss: {loss:.3f}'
f'LR: {lr} | Time: {round(delta, 3)} seconds')
times.append(delta)
print(f'Average time per epoch: {round(np.mean(times), 3)} seconds')
return self
def fit_epoch(self, dataloader):
"""
Fit's one epoch. An epoch is one round through the data you have available.
Parameters
----------
dataloader : A pytorch dataloader
Returns
-------
"""
batch_loss = torch.empty(len(dataloader))
self.model.train()
for batch_num, (batch, target) in enumerate(tqdm(dataloader)):
batch = self._batch_to_device(batch)
target = self._batch_to_device(target)
y_pred = self.model(batch)
loss = self.criterion(y_pred, target)
batch_loss[batch_num] = loss.detach()
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
return batch_loss.mean().item()
@property
def num_parameters(self):
return sum([p.shape.numel() for p in self.model.parameters()])
def _batch_to_device(self, batch):
"""
Sends data in batch to device. If batch is a list it goes recursively through each element in it's list and
sends it to the device.
Parameters
----------
batch : The batch data. Can be a tensor, a list or a pytorch geometric Batch
Returns
-------
"""
if isinstance(batch, torch.Tensor): # or isinstance(batch, Batch):
batch = batch.to(self.device)
else:
for ix, b in enumerate(batch):
if isinstance(b, torch.Tensor):
b = b.to(self.device)
elif isinstance(b, list):
b = self._batch_to_device(b)
else:
Warning('Unsupported type found in batch')
batch[ix] = b
return batch