-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc_acompcor.py
405 lines (279 loc) · 13.9 KB
/
calc_acompcor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 17 14:14:22 2016
calc_acompcor
@author: eaxfjord
"""
import os
import nibabel as nb
import numpy as np
from nipype.interfaces.spm.preprocess import Realign, Coregister, Normalize12
from nipype.interfaces.spm.utils import Analyze2nii
from SPMCustom import NewSegment
from nipype.pipeline.engine import Node, Workflow
from nipype.interfaces.utility import Function
from joblib import Parallel, delayed
import nibabel as nib
def convert_to_4d(functional_data):
for idx in xrange(0,len(functional_data)):
img = nib.load(functional_data[idx])
affine = img.affine
header = img.header
data = img.get_data()
if idx is 0:
all_data = data
all_data = all_data[..., np.newaxis]
else:
all_data = np.concatenate((all_data, data[..., np.newaxis]),
axis = -1)
functional_4d_data = nib.Nifti1Image(all_data, affine, header)
return functional_4d_data
def calc_noise_timeseries(masks, functional_images, ventricle_mask):
from calc_acompcor import acompcor_nipype
from calc_acompcor import convert_to_4d
import numpy as np
import nibabel as nib
from sklearn.decomposition import PCA
from skimage.morphology import binary_erosion
from nilearn.image import resample_img
csf_mask = nib.load(masks[2][0])
wm_mask = nib.load(masks[1][0])
gm_mask = nib.load(masks[0][0])
if len(functional_images) > 1:
functional_image = convert_to_4d(functional_images)
csf_rs = resample_img(csf_mask,target_affine=functional_image.affine,
target_shape=functional_image.shape[:-1],
interpolation='nearest')
wm_rs = resample_img(wm_mask,target_affine=functional_image.affine,
target_shape=functional_image.shape[:-1],
interpolation='nearest')
gm_rs = resample_img(gm_mask,target_affine=functional_image.affine,
target_shape=functional_image.shape[:-1],
interpolation='nearest')
# reduce masks to voxels with 99% probability or higher
csf_rs = csf_rs.get_data() >=0.99
wm_rs = wm_rs.get_data() >=0.99
gm_rs = gm_rs.get_data() >=0.99
functional_data = np.squeeze(functional_image.get_data())
ventricle_mask = resample_img(ventricle_mask,
target_affine=functional_image.affine,
target_shape = functional_data.shape[:-1],
interpolation='nearest')
ventdata = ventricle_mask.get_data() > 50
# intersect csf with ventricles
csf_rs = csf_rs & ventdata
# get time series data
csf_ts = functional_data[csf_rs>0]
wm_rs = binary_erosion(wm_rs)
wm_ts = functional_data[wm_rs>0]
gm_ts = functional_data[gm_rs>0]
components_wm = acompcor_nipype(wm_ts)
components_csf = acompcor_nipype(csf_ts)
wm_mask = nib.Nifti1Image(wm_rs, affine=functional_image.affine,
header = functional_image.header)
csf_mask = nib.Nifti1Image(csf_rs, affine=functional_image.affine,
header = functional_image.header)
nib.save(wm_mask, 'wm_mask.nii')
nib.save(csf_mask, 'csf_mask.nii')
np.savetxt('csf_components.txt', components_csf, fmt='%.10f')
np.savetxt('wm_components.txt', components_wm, fmt='%.10f')
np.savetxt('all_wm_timeseries.txt', wm_ts, fmt='%.10f')
np.savetxt('all_csf_timeseries.txt', csf_ts, fmt='%.10f')
np.savetxt('all_gm_timeseries.txt', gm_ts, fmt='%.10f')
out_masks = [wm_mask, csf_mask]
components = np.column_stack((components_csf, components_wm))
return components, out_masks
def calc_global(masks,functional_images):
from calc_acompcor import convert_to_4d
from nilearn.image import resample_img
import numpy as np
import nibabel as nib
if len(functional_images) > 1:
functional_image = convert_to_4d(functional_images)
gray_matter = nib.load(masks[0][0]).get_data() > 0
white_matter = nib.load(masks[1][0]).get_data() > 0
csf = nib.load(masks[2][0]).get_data() > 0
brain = gray_matter + white_matter + csf
affine = nib.load(masks[0][0]).affine
header = nib.load(masks[0][0]).header
brain_img = nib.Nifti1Image(brain, affine, header)
brain_rs = resample_img(brain_img,target_affine=functional_image.affine,
target_shape=functional_image.shape[:-1],
interpolation='nearest')
brain_data = brain_rs.get_data()
brain = brain_data >= 0.5
data = functional_image.get_data()
brain_ts = data[brain]
std_brain = np.std(brain_ts.T,axis=0)
mean_brain = np.mean(brain_ts.T,axis=0)
x_global = (brain_ts.T - mean_brain)/(std_brain + 1e-6)
global_signal = np.mean(x_global,1)
nib.save(brain_rs, 'brain_mask.nii')
np.savetxt('global_signal.txt', global_signal, fmt = '%.10f')
global_signal = global_signal[...,np.newaxis]
return global_signal , brain_rs
def glm(csf_components, wm_components, global_signal):
import statsmodels.api as sm
y = global_signal
X = wm_components
X = sm.add_constant(X)
model = sm.OLS(y, X)
results = model.fit()
print results
def nuisance_regress(regressors, brainmask, functional_images):
import os
from calc_acompcor import convert_to_4d
import nibabel as nib
import numpy as np
if len(functional_images) > 1:
functional_image = convert_to_4d(functional_images)
functional_data = functional_image.get_data()
mask_data = brainmask.get_data()
ijk = mask_data==1
timeseries = functional_data[ijk].T
x, _, _, _ = np.linalg.lstsq(regressors, timeseries)
timeseries_hat = np.dot(regressors,x)
residuals = timeseries - timeseries_hat
indexes = np.where(mask_data==1)
rebuilt_array = np.zeros(functional_data.shape)
rebuilt_array[indexes[0], indexes[1], indexes[2]] = residuals.T
residuals_image = nib.Nifti1Image(rebuilt_array, functional_image.affine,
functional_image.header)
out_file = os.path.join(os.getcwd(), 'residuals.nii')
nib.save(residuals_image, out_file)
return out_file
def corr_each_voxel(global_residuals, acompcor_residuals, brainmask):
import nibabel as nib
import numpy as np
import os
global_data = global_residuals.get_data()
acompcor_data = acompcor_residuals.get_data()
mask_data = brainmask.get_data()
ijk = mask_data==1
timeseries_global = global_data[ijk].T
timeseries_acompcor = acompcor_data[ijk].T
corr = np.zeros(timeseries_global.shape[1])
for i in xrange(timeseries_global.shape[1]):
corr[i] = np.corrcoef(timeseries_global[:,i],
timeseries_acompcor[:,i])[0,1]
indexes = np.where(mask_data==1)
rebuilt_array = np.zeros(global_data.shape[:-1])
rebuilt_array[indexes[0], indexes[1], indexes[2]] = corr
corr_image = nib.Nifti1Image(rebuilt_array, global_residuals.affine,
global_residuals.header)
out_file = os.path.join(os.getcwd(), 'correlations.nii')
nib.save(corr_image, out_file)
def short_pipeline(functional_data, anatomical_data):
spm_path = '/home/egill/matlabtools/spm12/'
alvin_path = '/home/egill/global_vs_acompcor/alvin_mask/ALVIN_mask_v1.hdr'
working_dir = '/home/egill/global_vs_acompcor/working_dir'
from nipype import config
config.set('execution', 'remove_unnecessary_outputs', 'False')
realigner = Node(interface = Realign(register_to_mean=True),
name = 'realigner')
realigner.inputs.in_files = functional_data
coregister = Node(interface = Coregister(), name = 'coregister')
coregister.inputs.jobtype = 'estimate'
coregister.inputs.source = anatomical_data
segment = Node(interface = NewSegment(), name = 'segment')
segment.inputs.channel_info = (0.001, 60, (True, True))
segment.inputs.write_deformation_fields = [True, True]
tpm = os.path.join(spm_path,'tpm/TPM.nii')
tissue1 = ((tpm, 1), 1, (True, False), (False, False))
tissue2 = ((tpm, 2), 1, (True, False), (False, False))
tissue3 = ((tpm, 3), 2, (True, False), (False, False))
tissue4 = ((tpm, 4), 3, (False, False), (False, False))
tissue5 = ((tpm, 5), 4, (False, False), (False, False))
tissue6 = ((tpm, 6), 2, (False, False), (False, False))
segment.inputs.tissues = [tissue1, tissue2, tissue3, tissue4,
tissue5, tissue6]
segment.inputs.affine_regularization = 'mni'
alvin_to_nifti = Node(interface = Analyze2nii(),
name = 'alvin_to_nifti')
alvin_to_nifti.inputs.analyze_file = alvin_path
alvin_to_native = Node(interface = Normalize12(),
name = 'alvin_to_native')
alvin_to_native.inputs.jobtype = 'write'
calc_acompcor = Node(interface = Function(input_names = \
['masks', 'functional_images', 'ventricle_mask'],
output_names = ['components','out_masks'],
function = calc_noise_timeseries),
name = 'calc_acompcor')
calc_global_signal = Node(interface = Function(
input_names = ['masks', 'functional_images'],
output_names = ['global_signal', 'brain_img'],
function = calc_global), name = 'calc_global_signal')
regressor = Node(interface = Function(
input_names = ['regressors', 'brainmask', 'functional_images'],
output_names = 'out_file', function = nuisance_regress),
name = 'regressor')
regressor_global = regressor.clone(name='global_regress')
preproc = Workflow(name = 'preproc')
preproc.base_dir = working_dir
preproc.connect([(realigner, coregister, [('mean_image',
'target')]),
(coregister, segment, [('coregistered_source',
'channel_files')]),
(alvin_to_nifti, alvin_to_native, [('nifti_file',
'apply_to_files')]),
(segment, alvin_to_native, [('inverse_deformation_field',
'deformation_file')]),
(segment, calc_acompcor, [('native_class_images',
'masks')]),
(realigner, calc_acompcor, [('realigned_files',
'functional_images')]),
(alvin_to_native, calc_acompcor, [('normalized_files',
'ventricle_mask')]),
(realigner, calc_global_signal,
[('realigned_files', 'functional_images')]),
(segment, calc_global_signal, [('native_class_images',
'masks')]),
(calc_acompcor, regressor, [('components', 'regressors')]),
(calc_global_signal, regressor, [('brain_img', 'brainmask')]),
(realigner, regressor, [('realigned_files',
'functional_images')]),
(calc_global_signal, regressor_global, [('global_signal',
'regressors')]),
(calc_global_signal, regressor_global, [('brain_img',
'brainmask')]),
(realigner, regressor_global, [('realigned_files',
'functional_images')])
])
preproc.write_graph(dotfilename='graph.dot', graph2use='hierarchical',
format = 'png')
preproc.run('MultiProc')
def acompcor_nipype(voxel_timecourses):
from scipy import linalg
M = voxel_timecourses.T
# "Voxel time series from the noise ROI (either anatomical or tSTD) were
# placed in a matrix M of size Nxm, with time along the row dimension
# and voxels along the column dimension."
stdM = np.std(M, axis=0)
# set bad values to x
stdM[stdM == 0] = 1
stdM[np.isnan(stdM)] = 1
M = M / stdM
# "The covariance matrix C = MMT was constructed and decomposed into its
# principal components using a singular value decomposition."
u, _, _ = linalg.svd(M, full_matrices=False)
components = u[:, :5]
return components
def run(idx,each,data_dir):
subject_list = ['con001_T1', 'con002_T1', 'con003_T1']
subject = subject_list[0]
data_dir = '/home/egill/Dropbox/test_data/'
functional_folder = os.path.join(data_dir, subject)
anatomical_folder = os.path.join(data_dir, subject, 'T1Img')
functional_data = [os.path.join(functional_folder,fn) for fn in os.listdir(functional_folder)
if fn.endswith('.nii')]
functional_data.sort()
anatomical_data = [os.path.join(anatomical_folder,fn) for fn in
os.listdir(anatomical_folder) if fn.endswith('.nii')]
short_pipeline(functional_data, anatomical_data)
if __name__ == "__main__":
data_dir = '/data/eaxfjord/fmriRSWorkingDir/nipype/output_dir_PreProc_Final/'
subject_dir = os.path.join(data_dir,'filtered')
subject_list= sorted(os.listdir(subject_dir)) #all subjects included in the study
results = Parallel(n_jobs=6)(delayed(run)(idx,each,data_dir)
for idx,each in enumerate(subject_list))