This repository has been archived by the owner on May 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy path01-overview.Rmd
54 lines (45 loc) · 1.87 KB
/
01-overview.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Overview
## Package installation
The following packages are required to run the code in this workshop:
```{r setup}
# Install packages
if (!require("pacman")) install.packages("pacman")
install.packages("tidyverse")
pacman::p_load(# Tidymodels framework
tidymodels,
# Tidyverse packages including dplyr and ggplot2
tidyverse,
# Algorithms
glmnet, ranger, rpart, xgboost, pvclust, mclust,
# Visualization
rpart.plot, vip, ape, corrr, GGally,
# Machine learning frameworks
caret, SuperLearner,
# R utility packages
remotes, here, glue, patchwork, doParallel,
# Import/export of any filetype.
rio,
# Misc
pROC, bookdown)
# Install packages not on CRAN or with old version on CRAN.
remotes::install_github("ck37/ck37r")
# Hide the many messages and possible warnings from loading all these packages.
suppressMessages(suppressWarnings({
library(ape) # Cluster visualizations
library(caret) # createDataPartition creates a stratified random split
library(ck37r) # impute_missing_values, standardize, SuperLearner helpers
library(glmnet) # Lasso
library(mclust) # Model-based clustering
library(PCAmixdata) # PCA
library(pROC) # Compute and plot AUC
library(pvclust) # Dendrograms with p-values
library(ranger) # Random forest algorithm
library(remotes) # Allows installing packages from github
library(rio) # Import/export for any filetype.
library(rpart) # Decision tree algorithm
library(rpart.plot) # Decision tree plotting
library(SuperLearner) # Ensemble methods
library(xgboost) # Boosting method
library(vip) # Variable importance plots
}))
```