-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_SE_focal_val2.py
328 lines (283 loc) · 13.4 KB
/
train_SE_focal_val2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""
for reproduce
Author: Zhenbo Xu
Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
"""
import os, sys
import shutil
import time
from config import *
os.chdir(rootDir)
from matplotlib import pyplot as plt
from tqdm import tqdm
from config_mots import *
from criterions.mots_seg_loss import *
from criterions.my_loss import *
from datasets import get_dataset
from models import get_model
from utils.utils import AverageMeter, ClusterSeedCls, Logger, Visualizer, ClusterSeedClsWithFilter, ClusterSeedClsWithFilter0907
from file_utils import remove_key_word
from models.radam import RAdam
import subprocess
from file_utils import save_pickle2
# torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = False
config_name = sys.argv[1]
args = eval(config_name).get_args()
if args['save']:
if not os.path.exists(args['save_dir']):
os.makedirs(args['save_dir'])
if args['display']:
plt.ion()
else:
plt.ioff()
plt.switch_backend("agg")
# set device
device = torch.device("cuda:0" if args['cuda'] else "cpu")
# clustering
# cluster = ClusterSeedClsWithFilter0907()
cluster = ClusterSeedClsWithFilter()
print('avg_seed: ', args['avg_seed'],
', threshold: ', args['threshold'],
', min_seed: ', args['min_seed_thresh'],
', inst_ratio: ', args['inst_ratio'],
', dist_thresh: ', args['dist_thresh'],
', min_pixel: ', args['min_pixel'],)
# Visualizer
visualizer = Visualizer(('image', 'pred', 'sigma', 'seed'))
# Logger
logger = Logger(('train', 'val', 'iou'), 'loss')
# train dataloader
train_dataset = get_dataset(
args['train_dataset']['name'], args['train_dataset']['kwargs'])
train_dataset_it = torch.utils.data.DataLoader(
train_dataset, batch_size=args['train_dataset']['batch_size'], shuffle=True, drop_last=True,
num_workers=args['train_dataset']['workers'], pin_memory=True if args['cuda'] else False)
# val dataloader
val_dataset = get_dataset(
args['val_dataset']['name'], args['val_dataset']['kwargs'])
val_dataset_it = torch.utils.data.DataLoader(
val_dataset, batch_size=args['val_dataset']['batch_size'], shuffle=True, drop_last=True,
num_workers=args['train_dataset']['workers'], pin_memory=True if args['cuda'] else False)
# set model
model = get_model(args['model']['name'], args['model']['kwargs'])
model.init_output(args['loss_opts']['n_sigma'])
model = torch.nn.DataParallel(model).to(device)
# set criterion
criterion = eval(args['loss_type'])(**args['loss_opts'])
criterion = torch.nn.DataParallel(criterion).to(device)
criterionVal = eval(args['loss_type'])(foreground_weight=10, to_center=args['loss_opts']['to_center'], eval=True)
# if args['train_dataset']['kwargs']['type']=='crop':
# criterionVal = eval(args['loss_type'])(foreground_weight=50, to_center=args['loss_opts']['to_center'], eval=True) # 统一val时候loss的计算
# elif 'person' in args['train_dataset']['name']:
# criterionVal = eval(args['loss_type'])(foreground_weight=50, to_center=args['loss_opts']['to_center'], eval=True)
# else:
# criterionVal = eval(args['loss_type'])(foreground_weight=50, to_center=args['loss_opts']['to_center'], eval=True)
criterionVal = torch.nn.DataParallel(criterionVal).to(device)
# resume
start_epoch = 0
best_iou = 0
best_seed, best_val = 10, 100
best_seg = 0.0
min_seg = 0.7
max_disparity = args['max_disparity']
temp_state_file = os.path.join(args['save_dir'], 'temp.pth')
if 'resume_path' in args.keys() and args['resume_path'] is not None and os.path.exists(args['resume_path']):
print('Resuming model from {}'.format(args['resume_path']))
state = torch.load(args['resume_path'])
if 'start_epoch' in args.keys():
start_epoch = args['start_epoch']
elif 'epoch' in state.keys():
start_epoch = state['epoch'] + 1
else:
start_epoch = 1
# best_iou = state['best_iou']
for kk in state.keys():
if 'state_dict' in kk:
state_dict_key = kk
break
new_state_dict = state[state_dict_key]
if not 'state_dict_keywords' in args.keys():
try:
model.load_state_dict(new_state_dict, strict=True)
except:
print('resume checkpoint with strict False')
model.load_state_dict(new_state_dict, strict=False)
else:
new_state_dict = remove_key_word(state[state_dict_key], args['state_dict_keywords'])
model.load_state_dict(new_state_dict, strict=False)
print('resume checkpoint with strict False')
try:
logger.data = state['logger_data']
except:
pass
# set optimizer
if 'decode_only' in args.keys() and args['decode_only']:
print('finetune decode_only')
optimizer = torch.optim.Adam(list(model.module.decoders[0].parameters())+
list(model.module.decoders[1].parameters())+
list(model.module.decoders[2].parameters()), lr=args['lr'], weight_decay=1e-4)
else:
optimizer = RAdam(model.parameters(), lr=args['lr'], weight_decay=1e-4)
# optimizer = torch.optim.Adam(model.parameters(), lr=args['lr'], weight_decay=1e-4)
# optimizer = torch.optim.SGD(model.parameters(), args['lr'], momentum=0.9)
def lambda_(epoch):
return pow((1 - ((epoch) / args['n_epochs'])), 0.9)
if 'milestones' in args.keys():
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args['milestones'], gamma=args['gamma'] if 'gamma' in args.keys() else 0.1)
else:
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_, )
def train(epoch):
global nan_list, nan_state, model, device
torch.cuda.empty_cache()
# define meters
loss_meter = AverageMeter()
loss_seed_meter = AverageMeter()
# put model into training mode
model.train()
if 'fix_bn' in args.keys() and args['fix_bn']:
print('BN Fixed!')
# freeze bn if need
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
for param_group in optimizer.param_groups:
print('learning rate: {}'.format(param_group['lr']))
for i, sample in enumerate(tqdm(train_dataset_it,position=0, leave=True)):
if i % 500==1:
torch.save(model.state_dict(), temp_state_file)
ims = sample['image']
instances = sample['instance'].squeeze(1)
class_labels = sample['label'].squeeze(1)
output = model(ims)
seed_w = sample['seed_w'].squeeze(1) if 'seed_w' in sample.keys() else None
loss, seed_loss = criterion(output, instances, class_labels, **args['loss_w'], seed_w=seed_w, show_seed=True)
loss = loss.mean()
seed_loss = seed_loss.mean()
if not torch.isnan(loss):
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_meter.update(loss.item())
loss_seed_meter.update(seed_loss.item())
else:
raise NotImplementedError
return loss_meter.avg, loss_seed_meter.avg
def val(epoch):
# define meters
loss_meter, iou_meter, loss_seed_meter = AverageMeter(), AverageMeter(), AverageMeter()
# put model into eval mode
model.eval()
clusterVal = torch.nn.DataParallel(cluster).to(device)
if not os.path.isdir(args['seg_dir']):
os.mkdir(args['seg_dir'])
with torch.no_grad():
for i, sample in enumerate(tqdm(val_dataset_it,position=0, leave=True)):
if iou_meter.count[0] > 10 and iou_meter.avg < min_seg:
break
ims = sample['image']
instances = sample['instance'].squeeze(1)
class_labels = sample['label'].squeeze(1)
im_names = sample['im_name']
output = model(ims)
loss, focal_loss = criterionVal(output, instances, class_labels, **args['loss_w'], iou=True, iou_meter=iou_meter, show_seed=True)
loss_seed_meter.update(focal_loss.mean().item())
loss_meter.update(loss.mean().item())
sizes = sample['im_shape'].squeeze(1)
for ind, (w,h) in enumerate(sizes):
output[ind, :, w:, h:] = 0
# output_ = output[ind, :, :h, :w]
instance_maps = clusterVal(output, threshold=args['threshold'],
min_pixel=args['min_pixel'],
min_inst_pixel=args[
'min_inst_pixel'] if "min_inst_pixel" in args.keys() else
args['min_pixel'],
min_seed_thresh=args[
'min_seed_thresh'] if "min_seed_thresh" in args.keys() else 0.5,
dist_thresh=args[
'dist_thresh'] if "dist_thresh" in args.keys() else 0.5,
inst_ratio=args['inst_ratio'] if "inst_ratio" in args.keys() else 0.5,
n_sigma=args["n_sigma"] if "n_sigma" in args.keys() else 2,
avg_seed=args["avg_seed"] if "avg_seed" in args.keys() else 0.0)
for ind, (w, h) in enumerate(sizes):
video, frameCount = im_names[ind].split('/')[-2:]
frameCount = int(float(frameCount.split('.')[0]))
base = video + '_' + str(frameCount) + '.pkl'
instance_map_np = instance_maps[ind][:h, :w].cpu().numpy()
save_pickle2(os.path.join(args['seg_dir'], base), instance_map_np)
if iou_meter.avg > min_seg:
# eval on args['save_dir']
if 'person' in args['save_dir']:
p = subprocess.run([pythonPath, "-u", "test_tracking.py", 'person_test_tracking_val'], stdout=subprocess.PIPE, cwd=rootDir)
else:
p = subprocess.run([pythonPath, "-u", "test_tracking.py", 'car_test_tracking_val'], stdout=subprocess.PIPE, cwd=rootDir)
pout = p.stdout.decode("utf-8")
if 'person' in args['save_dir']:
class_str = "Evaluate class: Pedestrians"
else:
class_str = "Evaluate class: Cars"
pout = pout[pout.find(class_str):]
print(pout[pout.find('all '):][6:126].strip())
acc = pout[pout.find('all '):][6:26].strip().split(' ')[0]
else:
acc=0.0
try:
return iou_meter.avg, float(acc), loss_seed_meter.avg, loss_meter.avg
except:
return iou_meter.avg, 0.0, loss_seed_meter.avg, loss_meter.avg
def save_checkpoint(state, is_best, val_iou, best_seg, val_seed_loss, train_loss, val_loss, is_val_lowest=False, is_lowest=False, is_seed_lowest=False, name='checkpoint.pth'):
print('=> saving checkpoint')
if 'save_name' in args.keys():
file_name = os.path.join(args['save_dir'], args['save_name'])
else:
file_name = os.path.join(args['save_dir'], name)
torch.save(state, file_name)
if is_best:
shutil.copyfile(file_name, os.path.join(
args['save_dir'], 'best_iou_model.pth' + '{:.4f}'.format(val_iou)))
if is_seed_lowest:
shutil.copyfile(file_name, os.path.join(
args['save_dir'], 'best_focal_model.pth' + '{:.8f}'.format(val_seed_loss) + '_' + '{:.4f}'.format(train_loss)))
if is_val_lowest:
shutil.copyfile(file_name, os.path.join(
args['save_dir'], 'best_val_model.pth' + '{:.8f}'.format(val_loss) + '_' + '{:.8f}'.format(val_seed_loss)))
if is_lowest:
shutil.copyfile(file_name, os.path.join(
args['save_dir'], 'best_seg_model.pth' + '{:.4f}'.format(best_seg) + '_' + '{:.4f}'.format(train_loss)))
nan_state = 0
for epoch in range(start_epoch, args['n_epochs']):
is_best, is_lowest, is_seed_lowest, is_val_lowest = False, False, False, False
print('Starting epoch {}'.format(epoch))
if epoch > start_epoch:
scheduler.step()
# else:
# val_loss, val_iou, val_seed_loss, val_loss = val(epoch)
# print('===> val loss: {:.4f}, val iou: {:.4f}, val seed: {:.8f}'.format(val_loss, val_iou, val_seed_loss))
train_loss, seed_loss = train(epoch)
seg_iou, val_iou, val_seed_loss, val_loss = val(epoch)
print('===> train loss: {:.4f}, ===> seed loss: {:.8f}'.format(train_loss, seed_loss))
print('===> seg iou: {:.4f}, val iou: {:.4f}, val seed: {:.8f}, val loss: {:.8f}'.format(seg_iou, val_iou, val_seed_loss, val_loss))
logger.add('train', train_loss)
logger.add('val', seg_iou)
logger.add('iou', val_iou)
logger.plot(save=args['save'], save_dir=args['save_dir'])
is_best = val_iou > best_iou
best_iou = max(val_iou, best_iou)
is_lowest = seg_iou > best_seg
best_seg = max(seg_iou, best_seg)
if val_seed_loss > 1e-10:
is_seed_lowest = val_seed_loss < best_seed
best_seed = min(val_seed_loss, best_seed)
if val_loss > 1e-10:
is_val_lowest = val_loss < best_val
best_val = min(val_loss, best_val)
if args['save']:
state = {
'epoch': epoch,
'best_iou': best_iou,
'best_seed': best_seed,
'model_state_dict': model.state_dict(),
'optim_state_dict': optimizer.state_dict(),
'logger_data': logger.data
}
save_checkpoint(state, is_best, val_iou, best_seg, val_seed_loss, train_loss, val_loss, is_val_lowest=is_val_lowest, is_lowest=is_lowest, is_seed_lowest=is_seed_lowest)