diff --git a/decode/qlook.py b/decode/qlook.py index bb0ee10..44c7dc6 100644 --- a/decode/qlook.py +++ b/decode/qlook.py @@ -233,13 +233,17 @@ def daisy( cont = cube.weighted(weight.fillna(0)).mean("chan") ### GaussFit (cont) - data = np.array(copy.deepcopy(cont).data) - data[np.isnan(data)] = 0 - x, y = np.meshgrid(np.array(cube["lon"]), np.array(cube["lat"])) - initial_guess = (1, 0, 0, 30, 30, 0, 0) - popt, pcov = curve_fit(gaussian_2d, (x, y), data.ravel(), p0=initial_guess) - perr = np.sqrt(np.diag(pcov)) - data_fitted = gaussian_2d((x, y), *popt).reshape(x.shape) + try: + data = np.array(copy.deepcopy(cont).data) + data[np.isnan(data)] = 0.0 + x, y = np.meshgrid(np.array(cube["lon"]), np.array(cube["lat"])) + initial_guess = (1, 0, 0, 30, 30, 0, 0) + popt, pcov = curve_fit(gaussian_2d, (x, y), data.ravel(), p0=initial_guess) + perr = np.sqrt(np.diag(pcov)) + data_fitted = gaussian_2d((x, y), *popt).reshape(x.shape) + is_gaussfit_successful = True + except: + is_gaussfit_successful = False # save result suffixes = f".{suffix}.{format}" @@ -259,26 +263,37 @@ def daisy( max_pix = cont.where(cont == cont.max(), drop=True) cont.plot(ax=ax) # type: ignore - ax.contour( - data_fitted, - extent=(x.min(), x.max(), y.min(), y.max()), - origin="lower", - levels=np.linspace(0, np.nanmax(data), 8), - colors="k", - ) + if is_gaussfit_successful: + ax.contour( + data_fitted, + extent=(x.min(), x.max(), y.min(), y.max()), + origin="lower", + levels=np.linspace(0, popt[0], 8), + colors="k", + ) + ax.set_title( + f"Peak = {popt[0]:+.2e} [{cont.units}], " + f"dAz = {popt[1]:+.2f} [{cont.lon.attrs['units']}], " + f"dEl = {popt[2]:+.2f} [{cont.lat.attrs['units']}],\n" + f"$\\sigma_x$ = {np.abs(popt[3]):+.2f} [{skycoord_units}], " + f"$\\sigma_y$ = {np.abs(popt[4]):+.2f} [{skycoord_units}], " + f"P.A. = {(np.rad2deg(popt[5]) + 90) % 180 - 90:+.1f} [deg],\n" + f"min_frequency = {min_frequency}, " + f"max_frequency = {max_frequency}", + fontsize=10, + ) + else: + ax.set_title( + f"Peak = {cont.max():.2e} [{cont.units}], " + f"dAz = {float(max_pix.lon):+.1f} [{cont.lon.attrs['units']}], " + f"dEl = {float(max_pix.lat):+.1f} [{cont.lat.attrs['units']}],\n" + f"min_frequency = {min_frequency}, " + f"max_frequency = {max_frequency}\n" + "(Gaussian fit failed: dAz and dEl are peak pixel based)", + fontsize=10, + ) ax.set_xlim(-map_lim, map_lim) ax.set_ylim(-map_lim, map_lim) - ax.set_title( - f"Peak = {popt[0]:+.2f} [{cont.units}], " - f"dAz = {popt[1]:+.2f} [{cont.lon.attrs['units']}], " - f"dEl = {popt[2]:+.2f} [{cont.lat.attrs['units']}]),\n" - f"$\\sigma_x$ = {popt[3]:+.2f} [{skycoord_units}], " - f"$\\sigma_y$ = {popt[4]:+.2f} [{skycoord_units}], " - f"$\\theta$ = {np.rad2deg(popt[5]):+.1f} [deg],\n" - f"min_frequency = {min_frequency}, " - f"max_frequency = {max_frequency}", - fontsize=10, - ) for ax in axes: # type: ignore ax.grid(True) @@ -478,13 +493,17 @@ def raster( cont = cube.weighted(weight.fillna(0)).mean("chan") ### GaussFit (cont) - data = np.array(copy.deepcopy(cont).data) - data[data != data] = 0.0 - x, y = np.meshgrid(np.array(cube["lon"]), np.array(cube["lat"])) - initial_guess = (1, 0, 0, 30, 30, 0, 0) - popt, pcov = curve_fit(gaussian_2d, (x, y), data.ravel(), p0=initial_guess) - perr = np.sqrt(np.diag(pcov)) - data_fitted = gaussian_2d((x, y), *popt).reshape(x.shape) + try: + data = np.array(copy.deepcopy(cont).data) + data[np.isnan(data)] = 0.0 + x, y = np.meshgrid(np.array(cube["lon"]), np.array(cube["lat"])) + initial_guess = (1, 0, 0, 30, 30, 0, 0) + popt, pcov = curve_fit(gaussian_2d, (x, y), data.ravel(), p0=initial_guess) + perr = np.sqrt(np.diag(pcov)) + data_fitted = gaussian_2d((x, y), *popt).reshape(x.shape) + is_gaussfit_successful = True + except: + is_gaussfit_successful = False # save result suffixes = f".{suffix}.{format}" @@ -504,26 +523,37 @@ def raster( max_pix = cont.where(cont == cont.max(), drop=True) cont.plot(ax=ax) # type: ignore - ax.contour( - data_fitted, - extent=(x.min(), x.max(), y.min(), y.max()), - origin="lower", - levels=np.linspace(0, np.nanmax(data), 8), - colors="k", - ) + if is_gaussfit_successful: + ax.contour( + data_fitted, + extent=(x.min(), x.max(), y.min(), y.max()), + origin="lower", + levels=np.linspace(0, popt[0], 8), + colors="k", + ) + ax.set_title( + f"Peak = {popt[0]:+.2e} [{cont.units}], " + f"dAz = {popt[1]:+.2f} [{cont.lon.attrs['units']}], " + f"dEl = {popt[2]:+.2f} [{cont.lat.attrs['units']}],\n" + f"$\\sigma_x$ = {np.abs(popt[3]):+.2f} [{skycoord_units}], " + f"$\\sigma_y$ = {np.abs(popt[4]):+.2f} [{skycoord_units}], " + f"P.A. = {(np.rad2deg(popt[5]) + 90) % 180 - 90:+.1f} [deg],\n" + f"min_frequency = {min_frequency}, " + f"max_frequency = {max_frequency}", + fontsize=10, + ) + else: + ax.set_title( + f"Peak = {cont.max():.2e} [{cont.units}], " + f"dAz = {float(max_pix.lon):+.1f} [{cont.lon.attrs['units']}], " + f"dEl = {float(max_pix.lat):+.1f} [{cont.lat.attrs['units']}],\n" + f"min_frequency = {min_frequency}, " + f"max_frequency = {max_frequency}\n" + "(Gaussian fit failed: dAz and dEl are peak pixel based)", + fontsize=10, + ) ax.set_xlim(-map_lim, map_lim) ax.set_ylim(-map_lim, map_lim) - ax.set_title( - f"Peak = {popt[0]:+.2f} [{cont.units}], " - f"dAz = {popt[1]:+.2f} [{cont.lon.attrs['units']}], " - f"dEl = {popt[2]:+.2f} [{cont.lat.attrs['units']}]),\n" - f"$\\sigma_x$ = {popt[3]:+.2f} [{skycoord_units}], " - f"$\\sigma_y$ = {popt[4]:+.2f} [{skycoord_units}], " - f"$\\theta$ = {np.rad2deg(popt[5]):+.1f} [deg],\n" - f"min_frequency = {min_frequency}, " - f"max_frequency = {max_frequency}", - fontsize=10, - ) for ax in axes: # type: ignore ax.grid(True)