-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgame.py
185 lines (153 loc) · 10 KB
/
game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from __future__ import print_function
import torch, os, gym, time, glob, argparse, sys
import numpy as np
from scipy.signal import lfilter
from scipy.misc import imresize
import torch.nn as nn
import torch.nn.functional as F
import torch.multiprocessing as mp
os.environ['OMP_NUM_THREADS'] = '1'
def get_args():
parser = argparse.ArgumentParser(description=None)
parser.add_argument('--env', default='SpaceInvaders-v0', type=str, help='gym environment')
parser.add_argument('--processes', default=20, type=int, help='number of processes to train with')
parser.add_argument('--render', default=True, type=bool, help='renders the atari environment')
parser.add_argument('--test', default=False, type=bool, help='sets lr=0, chooses most likely actions')
parser.add_argument('--rnn_steps', default=20, type=int, help='steps to train LSTM over')
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
parser.add_argument('--seed', default=1, type=int, help='seed random # generators (for reproducibility)')
parser.add_argument('--gamma', default=0.99, type=float, help='rewards discount factor')
parser.add_argument('--tau', default=1.0, type=float, help='generalized advantage estimation discount')
parser.add_argument('--horizon', default=0.99, type=float, help='horizon for running averages')
parser.add_argument('--hidden', default=256, type=int, help='hidden size of GRU')
return parser.parse_args()
discount = lambda x, gamma: lfilter([1],[1,-gamma],x[::-1])[::-1] # discounted rewards one liner
prepro = lambda img: imresize(img[35:195].mean(2), (80,80)).astype(np.float32).reshape(1,80,80)/255.
def printlog(args, s, end='\n', mode='a'):
print(s, end=end) ; f=open(args.save_dir+'log.txt',mode) ; f.write(s+'\n') ; f.close()
class NNPolicy(nn.Module): # an actor-critic neural network
def __init__(self, channels, memsize, num_actions):
super(NNPolicy, self).__init__()
self.conv1 = nn.Conv2d(channels, 32, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.conv4 = nn.Conv2d(32, 32, 3, stride=2, padding=1)
self.gru = nn.GRUCell(32 * 5 * 5, memsize)
self.critic_linear, self.actor_linear = nn.Linear(memsize, 1), nn.Linear(memsize, num_actions)
def forward(self, inputs, train=True, hard=False):
inputs, hx = inputs
x = F.elu(self.conv1(inputs))
x = F.elu(self.conv2(x))
x = F.elu(self.conv3(x))
x = F.elu(self.conv4(x))
hx = self.gru(x.view(-1, 32 * 5 * 5), (hx))
return self.critic_linear(hx), self.actor_linear(hx), hx
def try_load(self, save_dir):
paths = glob.glob(save_dir + '*.tar') ; step = 0
if len(paths) > 0:
ckpts = [int(s.split('.')[-2]) for s in paths]
ix = np.argmax(ckpts) ; step = ckpts[ix]
self.load_state_dict(torch.load(paths[ix]))
print("\tno saved models") if step is 0 else print("\tloaded model: {}".format(paths[ix]))
return step
class SharedAdam(torch.optim.Adam): # extend a pytorch optimizer so it shares grads across processes
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
super(SharedAdam, self).__init__(params, lr, betas, eps, weight_decay)
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
state['shared_steps'], state['step'] = torch.zeros(1).share_memory_(), 0
state['exp_avg'] = p.data.new().resize_as_(p.data).zero_().share_memory_()
state['exp_avg_sq'] = p.data.new().resize_as_(p.data).zero_().share_memory_()
def step(self, closure=None):
for group in self.param_groups:
for p in group['params']:
if p.grad is None: continue
self.state[p]['shared_steps'] += 1
self.state[p]['step'] = self.state[p]['shared_steps'][0] - 1 # a "step += 1" comes later
super.step(closure)
def cost_func(args, values, logps, actions, rewards):
np_values = values.view(-1).data.numpy()
# generalized advantage estimation using \delta_t residuals (a policy gradient method)
delta_t = np.asarray(rewards) + args.gamma * np_values[1:] - np_values[:-1]
logpys = logps.gather(1, torch.tensor(actions).view(-1,1))
gen_adv_est = discount(delta_t, args.gamma * args.tau)
policy_loss = -(logpys.view(-1) * torch.FloatTensor(gen_adv_est.copy())).sum()
# l2 loss over value estimator
rewards[-1] += args.gamma * np_values[-1]
discounted_r = discount(np.asarray(rewards), args.gamma)
discounted_r = torch.tensor(discounted_r.copy(), dtype=torch.float32)
value_loss = .5 * (discounted_r - values[:-1,0]).pow(2).sum()
entropy_loss = (-logps * torch.exp(logps)).sum() # entropy definition, for entropy regularization
return policy_loss + 0.5 * value_loss - 0.01 * entropy_loss
def train(shared_model, shared_optimizer, rank, args, info):
env = gym.make(args.env) # make a local (unshared) environment
env.seed(args.seed + rank) ; torch.manual_seed(args.seed + rank) # seed everything
model = NNPolicy(channels=1, memsize=args.hidden, num_actions=args.num_actions) # a local/unshared model
state = torch.tensor(prepro(env.reset())) # get first state
start_time = last_disp_time = time.time()
episode_length, epr, eploss, done = 0, 0, 0, True # bookkeeping
while info['frames'][0] <= 8e10 or args.test: # openai baselines uses 40M frames...we'll use 8000 M
model.load_state_dict(shared_model.state_dict()) # sync with shared model
hx = torch.zeros(1, 256) if done else hx.detach() # rnn activation vector
values, logps, actions, rewards = [], [], [], [] # save values for computing gradientss
for step in range(args.rnn_steps):
episode_length += 1
value, logit, hx = model((state.view(1,1,80,80), hx))
logp = F.log_softmax(logit, dim=-1)
action = torch.exp(logp).multinomial(num_samples=1).data[0]#logp.max(1)[1].data if args.test else
state, reward, done, _ = env.step(action.numpy()[0])
if args.render: env.render()
state = torch.tensor(prepro(state)) ; epr += reward
reward = np.clip(reward, -1, 1) # reward
done = done or episode_length >= 1e10 # don't playing one ep for too long
info['frames'].add_(1) ; num_frames = int(info['frames'].item())
if num_frames % 1e5 == 0: # save every 1M frames
printlog(args, '\n\t{:.0f}M frames: saved model\n'.format(num_frames/1e5))
torch.save(shared_model.state_dict(), args.save_dir+'model.{:.0f}.tar'.format(num_frames/1e5))
if done: # update shared data
info['episodes'] += 1
interp = 1 if info['episodes'][0] == 1 else 1 - args.horizon
info['run_epr'].mul_(1-interp).add_(interp * epr)
info['run_loss'].mul_(1-interp).add_(interp * eploss)
if rank == 0 and time.time() - last_disp_time > 60: # print info ~ every minute
elapsed = time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - start_time))
printlog(args, 'time {}, episodes {:.0f}, frames {:.1f}M, mean epr {:.2f}, run loss {:.2f}'
.format(elapsed, info['episodes'].item(), num_frames/1e5,
info['run_epr'].item(), info['run_loss'].item()))
last_disp_time = time.time()
if done: # maybe print info.
episode_length, epr, eploss = 0, 0, 0
state = torch.tensor(prepro(env.reset()))
values.append(value) ; logps.append(logp) ; actions.append(action) ; rewards.append(reward)
next_value = torch.zeros(1,1) if done else model((state.unsqueeze(0), hx))[0]
values.append(next_value.detach())
loss = cost_func(args, torch.cat(values), torch.cat(logps), torch.cat(actions), np.asarray(rewards))
eploss += loss.item()
shared_optimizer.zero_grad() ; loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 40)
for param, shared_param in zip(model.parameters(), shared_model.parameters()):
if shared_param.grad is None: shared_param._grad = param.grad # sync gradients with shared model
shared_optimizer.step()
if __name__ == "__main__":
if sys.version_info[0] > 2:
mp.set_start_method('spawn') # this must not be in global scope
elif sys.platform == 'linux' or sys.platform == 'linux2':
raise "Must be using Python 3 with linux!" # or else you get a deadlock in conv2d
args = get_args()
args.save_dir = '{}/'.format(args.env.lower()) # keep the directory structure simple
if args.render: args.processes = 1 ; args.test = True # render mode -> test mode w one process
if args.test: args.lr = 0 # don't train in render mode
args.num_actions = gym.make(args.env).action_space.n # get the action space of this game
os.makedirs(args.save_dir) if not os.path.exists(args.save_dir) else None # make dir to save models etc.
torch.manual_seed(args.seed)
shared_model = NNPolicy(channels=1, memsize=args.hidden, num_actions=args.num_actions).share_memory()
shared_optimizer = SharedAdam(shared_model.parameters(), lr=args.lr)
info = {k: torch.DoubleTensor([0]).share_memory_() for k in ['run_epr', 'run_loss', 'episodes', 'frames']}
info['frames'] += shared_model.try_load(args.save_dir) * 1e5
if int(info['frames'].item()) == 0: printlog(args,'', end='', mode='w') # clear log file
processes = []
for rank in range(args.processes):
p = mp.Process(target=train, args=(shared_model, shared_optimizer, rank, args, info))
p.start() ; processes.append(p)
for p in processes: p.join()