-
Notifications
You must be signed in to change notification settings - Fork 1
/
step3.py
109 lines (82 loc) · 3.43 KB
/
step3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import cv2
import numpy as np
import time
from model import NeuralNetwork
class Write():
net = NeuralNetwork()
load_from_disk = True
if load_from_disk:
penval = np.load('penval.npy')
cap = cv2.VideoCapture(0)
cap.set(3,1280)
cap.set(4,720)
kernel = np.ones((5,5),np.uint8)
# Initializing the canvas on which we will draw upon
canvas = None
# set the window to autosize so we can view this full screen.
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
# Initilize x1,y1 points
x1,y1=0,0
# Threshold for noise
noiseth = 800
while(1):
ret, frame = cap.read()
frame = cv2.flip( frame, 1 )
# Initilize the canvas as a black image of same size as the frame.
if canvas is None:
#canvas = np.zeros_like(frame)
canvas = np.zeros_like(frame)
canvas[100:500,100:500] = 0
if ret:
# Convert BGR to HSV
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# If you're reading from memory then load the upper and lower ranges from there
if load_from_disk:
lower_range = penval[0]
upper_range = penval[1]
# Otherwise define your own custom values for upper and lower range.
else:
lower_range = np.array([26,80,147])
upper_range = np.array([81,255,255])
mask = cv2.inRange(hsv, lower_range, upper_range)
# Perform morphological operations to get rid of the noise
mask = cv2.erode(mask,kernel,iterations = 1)
mask = cv2.dilate(mask,kernel,iterations = 2)
# Find Contours
_, contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Make sure there is a contour present and also its size is bigger than the noise threshold.
if contours and cv2.contourArea(max(contours, key = cv2.contourArea)) > noiseth:
c = max(contours, key = cv2.contourArea)
x2,y2,w,h = cv2.boundingRect(c)
# If there were no previous points then save the detected x2,y2 coordinates as x1,y1.
# This is true when we writing for the first time or when writing again when the pen had disapeared from view.
if x1 == 0 and y1 == 0:
x1,y1= x2,y2
else:
# Draw the line on the canvas
canvas = cv2.line(canvas, (x1,y1),(x2,y2), 255, 15)
# After the line is drawn the new points become the previous points.
x1,y1= x2,y2
else:
# If there were no contours detected then make x1,y1 = 0
x1,y1 =0,0
# Merge the canvas and the frame.
frame = cv2.add(frame,canvas)
# Optionally stack both frames and show it.
stacked = np.hstack((canvas,frame))
cv2.imshow('Track',cv2.resize(stacked,None,fx=0.6,fy=0.6))
k = cv2.waitKey(1) & 0xFF
if k == 27:
break
if k == ord('p'):
image = canvas[100:500,100:500]
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
result = net.predict(gray)
print("PREDICTION : ",result)
elif k==ord('s'):
print(frame.shape)
# When c is pressed clear the canvas
if k == ord('c'):
canvas = None
cv2.destroyAllWindows()
cap.release()