-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconverter2tflite.py
62 lines (48 loc) · 2.34 KB
/
converter2tflite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import tensorflow as tf
import cv2
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='TensorFlow to TFLite Converter')
parser.add_argument('--model', type=str, required=True, help='---Model type: conv, googlenet, resnet34, resnet50---')
parser.add_argument('--type', type=str, default='none', help='---Choose the model either teacher or student---')
parser.add_argument('--q_type', type=str, default='none', help='---Choose quant type: none, dynamic, float, int---')
args, unparsed = parser.parse_known_args()
def representative_data_gen():
for idx in range(0, 199):
image = cv2.imread('./dataset/validation_dataset/check/image (' + str(idx) + ').jpg', 0)
image = np.reshape(image, (1, 1, 224, 224))
image = image.astype('float32')
image = image / 255.0
yield [image]
def choosing_model():
model_base = tf.keras.models.load_model(f'./base_model_saved/{args.model}_base.h5', compile=False)
return model_base
model = choosing_model()
converter = tf.lite.TFLiteConverter.from_keras_model(model)
def quantization():
if args.q_type == 'none':
tflite_model = converter.convert()
return tflite_model
elif args.q_type == 'dynamic':
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()
return tflite_model
elif args.q_type == 'float':
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.float16]
tflite_model = converter.convert()
return tflite_model
elif args.q_type == 'int':
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_data_gen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_model = converter.convert()
return tflite_model
def saving_model(passed_data):
open(f'./base_model_saved/{args.model}_{args.q_type}.tflite', 'wb').write(passed_data)
return f"Completed with success! BASE: {args.base}, TYPE: {args.type}, Quantization method: {args.q_type}."
final = saving_model(quantization())
print(final)
print("Completed with success!")