cmiranda16PonceHealthSciencesUniversity
/
dsb3_Celso-Schematic-Spatial-Reducing-Inception-3D-Block
Public
forked from EliasVansteenkiste/dsb3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_lung_seg_scan_luna.py
58 lines (49 loc) · 1.57 KB
/
test_lung_seg_scan_luna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import sys
import lasagne as nn
import numpy as np
import theano
import pathfinder
import utils
from configuration import config, set_configuration
from utils_plots import plot_slice_3d_4
import theano.tensor as T
import blobs_detection
import logger
import time
import multiprocessing as mp
import buffering
theano.config.warn_float64 = 'raise'
if len(sys.argv) < 2:
sys.exit("Usage: test_luna_scan.py <configuration_name>")
config_name = sys.argv[1]
set_configuration('configs_seg_scan', config_name)
# predictions path
predictions_dir = utils.get_dir_path('model-predictions', pathfinder.METADATA_PATH)
outputs_path = predictions_dir + '/%s' % config_name
utils.auto_make_dir(outputs_path)
# logs
logs_dir = utils.get_dir_path('logs', pathfinder.METADATA_PATH)
sys.stdout = logger.Logger(logs_dir + '/%s.log' % config_name)
sys.stderr = sys.stdout
data_iterator = config().train_data_iterator
print
print 'Data'
print 'n samples: %d' % data_iterator.nsamples
start_time = time.time()
n_pos = 0
tp = 0
for n, (ct, lung_mask, annotations, tf_matrix, pid) in enumerate(data_iterator.generate()):
print '-------------------------------------'
print n, pid
n_pos += annotations.shape[0]
n_pid_tp = 0
annotations = np.int32(annotations)
for i in xrange(annotations.shape[0]):
if lung_mask[0, 0, annotations[i, 0], annotations[i, 1], annotations[i, 2]] == 1:
n_pid_tp += 1
tp += n_pid_tp
print annotations.shape[0], n_pid_tp
if annotations.shape[0] > n_pid_tp:
print '----HERE-----!!!!!'
print 'total', n_pos
print 'detected', tp