-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrandomize.ado
396 lines (319 loc) · 15.4 KB
/
randomize.ado
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
program define randomize, rclass sortpreserve
version 12.0
/*
*
*!Author: Chris J. Kennedy, Christopher B. Mann
*!Date: 2017-07-10
*
* Note: Stata version 12 is required due to the p-value matrix on regression results, but CM has a code fix to support version 11 if needed.
*/
/*
Future potential options:
- mahalanobis distance support.
- model(mlogit, mprobit, mahalanobis, etc.) -> algorithm used to assess balance. (Not Supported Yet)
- TARgets(numlist >0 <=3 integer) -> moments of each covariate to control for, 1 = mean, 2 = variance, 3 = skewness.
- support for maximation customization, e.g. iterations(#) vce(passthru)
- saveseed(varname) if blocking is used, save the randomization seed used within each strata for QC purposes.
TODO/Thoughts:
- Create unit tests to confirm that the randomization algorithm works correctly for a variety of experimental scenarios.
- Support cluster randomization directly within the algorithm eventually.
- Should sortseed also be a parameter so that it is defaulted?
- Develop an algorithm to rank how imbalanced given covariates are.
- Provide covariate balance plots.
- Automatically coarsen continuous covariates if used as blocks.
- Check for balance on additional moments and interactions of covariates.
- Ensure that blocking+clustering appropriately handles blocking variables that could cross clusters.
- Give a warning if the smallest strata size appearse too small to randomize to the given number of groups (e.g. at least 20 records per randomization group as a rule of thumb, or something relative to the # of balance covariates, e.g. twice).
====================================*/
syntax [if] [in] [, GRoups(integer 2) MINruns(integer 1) MAXruns(integer 1) BALance(string) BLock(varlist) JOintp(real 0) GENerate(name) CLuster(varlist) seed(real -1) REPlace AGGregate(string) details]
* Exclude observations that do not meet the IF or IN criteria (if specified).
qui: marksample touse
tempname balance_vars rand_seed total hide_details default_generate gen_internal value
* Save configuration variables into the return list.
return local groups `groups'
return local minruns `minruns'
return local maxruns `maxruns'
return local jointp `jointp'
loc `default_generate' = "_assignment"
local `balance_vars' "`balance'"
local `rand_seed' `seed'
* Save the balance configuration in the return list.
return local balance `balance'
* Save random number seed in the return list.
return local rand_seed `seed'
* Process the generate option.
if "`generate'" == "" {
* If the generate parameter is not specified use the default variable name to store the final assignments.
loc generate = "``default_generate''"
}
* Check if the specified generate variable already exists.
cap confirm variable `generate', exact
if _rc == 0 {
* Drop the prior assignment variable if the replace option was chosen.
if "`replace'" != "" {
qui drop `generate'
}
else {
dis as err "Error: variable `generate' already defined. Use the 'replace' option if you would like to automatically overwrite the assignment variable."
exit
}
}
* Save the generate variable name in the return list.
return local generate `generate'
* By default hide the detailed calculations.
local `hide_details' = "qui"
if "`details'" != "" {
* If the details options is specified, don't hide the detailed calculations.
local `hide_details' = ""
}
* Audit the aggregate values if that option is being used.
if "`aggregate'" != "" {
local `total' = 0
foreach `value' in `aggregate' {
local `total' = ``total'' + ``value''
}
if ``total'' != `groups' {
dis as err "Error: aggregation values do not sum to the total number of groups. Please correct the aggregation values."
exit
}
}
* Save the aggregate configuration in the return list.
return local aggregate `aggregate'
* Handle clustering if it was specified.
if "`cluster'" != "" {
tempvar cluster_id
* Create a cluster id based on the unique combination of cluster variables.
* TODO: handle continuous variables in this scenario, e.g. by using tiling and/or coarsened exact matching.
* TODO: ensure this works appropriately with automatic block creation.
egen `cluster_id' = group(`cluster')
}
* Save the cluster configuration in the return list.
return local cluster `cluster'
* Create the assignment variable. Start with a byte to conserve space; Stata will automatically promote to a larger number if the # of groups is large.
qui gen byte `generate' = . if `touse'
* Create temporary dataset variables.
tempvar strata_current strata_cnt rand_assign_current rand_assign_current2 strata_cnt standard_order
* Create temporary macro variables.
tempname num_balance_vars strata_size strata_num tries min best_run best_joint_p best_start_seed best_end_seed best_run rand_group num_strata starting_seed p used_try joint_p temp_min
tempname size pos val rand_vals
*----------------------------------
* Display current setup.
*----------------------------------
local `num_balance_vars': word count `balance'
* Renumber strata for each data subset.
if "`block'" != "" {
egen `strata_current' = group(`block') if `touse', label missing
dis "Block breakdown:"
tab `strata_current' if `touse'
local `num_strata' = r(r)
}
else {
* No blocking needed.
gen `strata_current' = 1 if `touse'
local `num_strata' = 1
}
* Save the block configuration in the return list.
return local block `block'
*--------------------------------------------------------------------------
* Automated re-randomization until the balance regression passes criteria
*--------------------------------------------------------------------------
* This saves the original order of the dataset, which is also restored at the end of the program.
gen `standard_order' = _n
* Use double so that we have a lower incidence of ties.
qui gen double `rand_assign_current' = .
* Create a second variable to further reduce the incidence of ties, and minimize the need to set the sortseed for reproducibility.
qui gen double `rand_assign_current2' = .
qui gen `strata_cnt' = .
* Set seed if defined.
if "`seed'" != "-1" {
set seed ``rand_seed''
}
* Blocked randomization with optimization in each strata.
* This loop will simply run once if we are not blocking on anything.
forvalues `strata_num' = 1/``num_strata'' {
qui count if `strata_current' == ``strata_num''
local `strata_size' = r(N)
if "`block'" == "" {
* No blocking.
dis "Randomizing ``strata_size'' records."
}
else {
dis "Randomizing block ``strata_num'' with ``strata_size'' records."
}
* Tracking variations for the rerandomization procedure.
local `tries' = 0
local `min' = 0
local `best_run' = -1
local `best_joint_p' = -1
**** Possible feature: could let people pass in a list of seeds once we have identified the best seed for each stratum, so that rerandomization is no longer necessary.
while ``tries'' < `minruns' | (``tries'' < `maxruns' & (``best_joint_p'' < `jointp')) {
* Update randomization count in the timer.
timer off 37
timer on 37
local ++`tries'
* Save the starting seed so that we can re-run this randomization if it is the best.
local `starting_seed' = c(seed)
* Sort by a deterministic order so that we have no dependence on prior randomizations or strata.
sort `standard_order'
* Generate first random number.
qui replace `rand_assign_current' = runiform() if `strata_current' == ``strata_num''
* Generate second random number.
qui replace `rand_assign_current2' = runiform() if `strata_current' == ``strata_num''
* Sort each strata in random order and calculate size of each strata. Sort on two doubles to minimize chance of ties
* Then follow with the standard order so that ties are broken deterministically.
qui bysort `strata_current' (`rand_assign_current' `rand_assign_current2' `standard_order'): replace `strata_cnt' = _n if `strata_current' == ``strata_num''
* Create a sequence of possible assignment values.
local `rand_vals' = ""
forvalues seq = 1/`groups'{
* Append to the list
local `rand_vals': list `rand_vals' | seq
}
* Loop through the groups and assign a proportional allocation to each.
* During assignment we create a random permutation of group orderings so that the groups have equal chance of receiving an extra unit due to rounding.
* Optional todo: See if we can convert this to use seq(), per JohnT's suggestion.
forvalues `rand_group' = `groups'(-1)1 {
* Find current size of the possible random assignments.
local `size': list sizeof `rand_vals'
* Choose a random position (integer) in the list of random assignments.
local `pos' = floor((``size'')*runiform()+1)
* Extract the assignment value at that location.
local `val': word ``pos'' of ``rand_vals''
* Remove that value from the list of possible assignments so that we sample without replacement.
local `rand_vals': list `rand_vals' - `val'
* Assign a portion of the stratum to the randomly chosen assignment value.
qui replace `generate' = ``val'' if `strata_cnt' <= ceil(``strata_size'' * ``rand_group'' / `groups') & `strata_current' == ``strata_num''
}
* Skip balance check if there are no balance vars.
if "``balance_vars''" != "" {
* dis "Checking balance on: ``balance_vars''"
* Do a multivariate comparison of means for the balance check, extracting the Wilk's lambda p-value.
cap ``hide_details'' mvtest means ``balance_vars'' if `strata_current' == ``strata_num'', by(`generate')
* NOTE: in very rare cases, the manova will fail for some reason. Here we recover from the error if it occurs, discarding the randomization.
* The capture has the unfortunate side effect of also hiding the manova test even if details are requested, but we can live with it.
if _rc == 506 {
* Set p to 0 so that this run is discarded.
local `joint_p' = 0
}
else if _rc == 0 {
matrix `p' = r(stat_m)
* Extract the Wilks' lambda.
local `joint_p' = `p'[1, 5]
* Set this just to keep the current algorithm working.
local `temp_min' = 0
}
else {
dis as err "Error in the manova test."
* Set p to 0 so that this run is discard.
local `joint_p' = 0
}
}
else {
* No balance vars, so this is always a good randomization.
dis "No balance variables so skipping balance checking."
local `joint_p' = 0
}
* String variable to output if we updated our best attempt with this try.
local `used_try' = ""
* Save this randomization if the balance p-value is better than our previous best.
if (``joint_p'' > ``best_joint_p'') {
local `best_run' = ``tries''
local `best_joint_p' = ``joint_p''
local `best_start_seed' = "``starting_seed''"
local `best_end_seed' = c(seed)
local `used_try' = "*"
}
``hide_details'' dis "Block ``strata_num'', Try " as result %2.0f ``tries'' as text ": Balance p-value = " as result %06.4f ``joint_p'' as text ".``used_try''"
}
``hide_details'' dis "----"
``hide_details'' dis "Block ``strata_num''. Tries: ``tries''. Best run: ``best_run''. Balance p-value: " as result %06.4f round(``best_joint_p'', .0001) as text "."
``hide_details'' dis "Start seed: ``best_start_seed''. End seed: ``best_end_seed''."
*------------------------------------------
* Re-run Best Randomization for Assignment
*------------------------------------------
``hide_details'' dis "Skip to run ``best_run''. Seed start: ``best_start_seed''"
set seed ``best_start_seed''
* Confirm that we are at the correct RNG state.
assert("``best_start_seed''" == c(seed))
* Save the seed for this strata in case we want to re-run anything.
* TODO: decide if we actually want to enable this.
* cap replace `strata_seed' = "`best_start_seed'" if strata_current == `strata_num'
* Sort by a deterministic order so that we have no dependence on prior randomizations or strata.
sort `standard_order'
* Generate first random number.
qui replace `rand_assign_current' = runiform() if `strata_current' == ``strata_num''
* Generate second random number.
qui replace `rand_assign_current2' = runiform() if `strata_current' == ``strata_num''
* Sort each strata in random order and calculate size of each strata. Sort on two doubles to minimize chance of ties
* Then follow with the standard order so that ties are broken deterministically, even if sortseed is not specified.
qui bysort `strata_current' (`rand_assign_current' `rand_assign_current2' `standard_order'): replace `strata_cnt' = _n if `strata_current' == ``strata_num''
* Create a sequence of possible assignment values.
local `rand_vals' = ""
forvalues seq = 1/`groups' {
* Append to the list.
local `rand_vals': list `rand_vals' | seq
}
* Loop through the groups and assign a proportional allocation to each.
* During assignment we create a random permutation of group orderings so that the groups have equal chance of receiving an extra unit due to rounding.
* TODO: See if we can convert this to use seq(), per JohnT's suggestion.
forvalues `rand_group' = `groups'(-1)1 {
* Find current size of the possible random assignments.
local `size': list sizeof `rand_vals'
* Choose a random position in the list of random assignments.
local `pos' = floor((``size'')*runiform()+1)
* Extract the assignment value at that location.
local `val': word ``pos'' of ``rand_vals''
* Remove that location from the list of possible assignments so that we sample without replacement.
local `rand_vals': list `rand_vals' - `val'
* Assign a portion of the stratum to the randomly chosen assignment value.
qui replace `generate' = ``val'' if `strata_cnt' <= ceil(``strata_size'' * ``rand_group'' / `groups') & `strata_current' == ``strata_num''
}
``hide_details'' dis "Ended at seed: " as result c(seed)
* Confirm that we finished at the correct RNG state.
assert(c(seed) == "``best_end_seed''")
* Look at the results for this strata.
if "`block'" != "" {
dis as text _n "Assignment results for block ``strata_num'':"
}
else {
dis as text _n "Assignment results:"
}
tab `generate' if `strata_current' == ``strata_num'', missing
* Only review balance if we have balance variables defined.
if "``balance_vars''" != "" {
if "`block'" != "" {
dis as text _n "Review balance within block ``strata_num'':"
}
else {
dis as text _n "Review balance:"
}
cap noisily mlogit `generate' ``balance_vars'' if `strata_current' == ``strata_num'', base(1) noomitted nolog
}
}
* Review the group assignments across all blocks.
dis as text _n "Assignment results:"
tab `generate' if `touse', m
* Aggregate the groups if desired, in order to generate unbalanced allocations from equally sized groups.
if "`aggregate'" != "" {
tempvar temp_assignment
tempname group_start assignment_iterator
qui gen `temp_assignment' = .
local `group_start' = 1
local `assignment_iterator' = 1
* Loop over each value of aggregate and merge the assignment groups.
foreach `value' in `aggregate' {
qui replace `temp_assignment' = ``assignment_iterator'' if `generate' >= ``group_start'' & `generate' < (``group_start'' + ``value'')
* Iterate the aggregated assignment value.
local ++`assignment_iterator'
* Move up the assignment values we are working with, so that the next iteration will process that set of assignments.
local `group_start' = ``group_start'' + ``value''
}
* Now move those aggregated assignments back into the main assignment variable.
qui replace `generate' = `temp_assignment'
dis as text _n "Aggregated assignment results:"
tab `generate'
}
* Restore the original ordering of the dataset in case it was being used.
* sort `standard_order'
* This should be done automatically by sortpreserve now.
* TODO: display timer count.
end