forked from jaegal88/pupil-shape-prior
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUNet_test_detect_rate.py
180 lines (152 loc) · 7.4 KB
/
UNet_test_detect_rate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from __future__ import print_function
import argparse
import torch
import time
import os
import sys
import numpy as np
import tensorflow as tf
import tensorflow.contrib.eager as tfe
import parameters
import Model_UNet_Segmentation
import cv2
import common
opts = tf.GPUOptions(per_process_gpu_memory_fraction=0.2)
conf = tf.ConfigProto(gpu_options=opts)
tfe.enable_eager_execution(config=conf)
nf_nch = '4f32ch'
Size_X = parameters.Size_X
Size_Y = parameters.Size_Y
def main():
# Training settings
parser = argparse.ArgumentParser(description='UNet test')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', ## Total Batch
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=100, metavar='N', ## Epoch
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=1e-4, metavar='LR', ## Learning Rate
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--cross_val_num', type=int, default=14,
help='For Cross Validation')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
name_load_model = './trained_model/UNet/'
# name_load_model = './trained_model_bk/Cross_validation/base/4f32ch/'
cross_val_num = parser.parse_args().cross_val_num
start_time = time.time()
end_time = time.time()
image_num = 94113
avg_cost= 0
model = Model_UNet_Segmentation.UNet4f32ch_sigmoid()
if os.path.exists(name_load_model):
load_saved_model_name = parameters.find_latest_model_name(name_load_model, cross_val_num)
model.load_state_dict(torch.load(load_saved_model_name))
print(parameters.C_GREEN + 'Check point Successfully Loaded' + parameters.C_END)
else:
print(parameters.C_RED + 'Check point Not Found' + parameters.C_END)
model.eval()
model.to(device)
print('Test Started!')
image_path = './ExCuSe_Origin/' #1~10까지만의 데이터셋
# image_path = 'C:/Users/HanSY/Python/Dataset/ExCuSe/gray/' #1~10까지만의 데이터셋
GTtxt_list = './GT_label_New/'
result_path = './result_files/'
if not os.path.exists(result_path):
os.mkdir(result_path)
txt_list = sorted(os.listdir(GTtxt_list))
cnt = 0
rangefiles = range(len(txt_list)) # num_sequence
numfile = 0
for i in rangefiles:
numfile += len(os.listdir(image_path + txt_list[i].replace(".txt", "")))
print(str(numfile) + ' files')
prev_x = 0
prev_y = 0
for i in rangefiles:
if i != cross_val_num:
continue
sub_folder_name = txt_list[i].replace(".txt", "")
print(f'Now inference: {sub_folder_name}')
txtFile = open(GTtxt_list + '/' + txt_list[i], 'r')
line = txtFile.readline()
resultTxt = open(result_path + txt_list[i], 'w')
resultTxt.write(line) # 0 Image_num X Y
for j in range(len(os.listdir(image_path + sub_folder_name))):
cnt = cnt + 1
## print expected time required
if cnt == 2:
start_time = time.time()
if cnt == 12:
end_time = time.time()
cost = end_time - start_time
common.print_expected_time_test(numfile,start_time,cost)
###############################
line = txtFile.readline()
file_name = sub_folder_name + '/' + line.split(" ")[1].zfill(10) + '.png'
inputImg = cv2.imread(image_path + file_name)
inputImg = inputImg[:, :, 0]
inputImg = cv2.resize(inputImg, (Size_X, Size_Y), interpolation=cv2.INTER_CUBIC)
inputImg_BK = inputImg.copy()
inputImg = inputImg[np.newaxis, np.newaxis, :]
inputImg = inputImg.astype(np.float32)/255
image = torch.from_numpy(inputImg)
image = image.to(device)
output = model(image)
output_bk = output[:, 0].clone().detach().cpu().numpy()
result_temp = output_bk.copy()
ttt = output_bk
ttt[ttt < 0.5] = 0
ttt[ttt >= 0.5] = 1
for_print_out = np.zeros((Size_Y, Size_X), np.float32)
if np.count_nonzero(ttt) == 0:
output_bk[output_bk < 0.25] = 0
output_bk[output_bk >= 0.25] = 1
else:
output_bk[output_bk < 0.5] = 0
output_bk[output_bk >= 0.5] = 1
## Connected Component Analysis
if np.count_nonzero(output_bk) != 0:
_, labels, stats, center = cv2.connectedComponentsWithStats(output_bk[0, :, :].astype(np.uint8))
stats = stats[1:, :]
pupil_candidate = np.argmax(stats[:, 4]) + 1
txt = line.split(" ")[0] + ' ' + line.split(" ")[1] + ' ' + str(round(center[pupil_candidate][0]*2, 3)) + ' ' + str(round(center[pupil_candidate][1]*2, 3)) + '\n'
output_bk[0, :, :][labels != pupil_candidate] = 0
prev_x = round(center[pupil_candidate][0] * 2, 3)
prev_y = round(center[pupil_candidate][1]*2, 3)
else:
if cnt == 0:
result_temp = cv2.blur(result_temp, (21, 21))
max_indices = np.unravel_index(result_temp.argmax(), result_temp.shape)
txt = line.split(" ")[0] + ' ' + line.split(" ")[1] + ' ' + str(max_indices[1]*2) + ' ' + str(max_indices[2]*2) + '\n'
prev_x = max_indices[1]*2
prev_y = max_indices[2]*2
else:
txt = line.split(" ")[0] + ' ' + line.split(" ")[1] + ' ' + str(prev_x) + ' ' + str(prev_y) + '\n'
# Center
resultTxt.write(txt)
# Segmentation Image
cv2.imwrite(os.path.join('result_image',f'{line.split(" ")[1].zfill(10)}.png'), (output_bk[0]*255+inputImg_BK)/2)
if cnt % 500 == 0:
print(f'{cnt} Images processed')
resultTxt.close()
sys.stdout.flush()
now = time.localtime()
s = "%04d-%02d-%02d %02d:%02d:%02d" % (now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min, now.tm_sec)
print(s)
if __name__ == '__main__':
main()