-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathembm.py
736 lines (640 loc) · 26.6 KB
/
embm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
# 2014-04-11
# Copyright 2014 S. Brewster Malevich <malevich@email.arizona.edu>
#
# embm is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>
"""
Energy-moisture balance climate model based on [1]_.
Notes
-----
Special thanks to Prof. Jianjun Yin at the University of
Arizona, Dept. Geosciences for input and education.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
import numpy as np
__all__ = ["vapor_pressure", "specific_humidity", "embm"]
SECONDS_PER_YEAR = 3.15569e7
def vapor_pressure(temp):
"""Return saturated vapor pressure (mb) for a given temp (K).
Notes
-----
Equations for saturated vapor pressure at a given air temp are not
give in [1]_. We're using the below definition.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
temp_c = temp - 273.15
return 6.112 * np.exp((17.67*temp_c) / (temp_c+243.5))
def specific_humidity(temp):
"""Return saturated specific humidity (kg/kg) for a given temp (K).
Notes
-----
Equations for saturated specific humidity at a given air temp are
not give in [1]_. We're using the below definition.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
vapor_p = vapor_pressure(temp)
return 0.622 * (vapor_p / (1013.26 - 0.378*vapor_p))
class Model(object):
"""Create an EMBM.
Energy-moisture balance model (EMBM) based on [1]_.
Attributes
----------
annual_shortwave : (J) array
Annual shortwave insolation distribution by latitude.
c_rhoa : float
Heat capacity of dry air (10^3 * J/(kg K)).
coalbedo : (J) array
Also known as (1 - α).
dalton : (J, I) array
The Dalton number.
e : (J, I) array
Global evaporation (m/yr).
earth_radius : float
The radius of the model's planet (m).
emissivity_atmosphere : (J) array
Atmospheric emissivity.
emissivity_ocean : float
Oceanic emissivity.
emissivity_planet : (J) array
Planetary emissivity.
epsilon_land : float
Solar scattering coefficient over land.
epsilon_sea : float
Solar scattering coefficient over the ocean.
h_atmosphere : int or float
Atmospheric scale depth (m).
h_humid : int or float
Specific humidity scale depth (m).
lat_range : (J) array
Gives the latitude for each of the model's grid cells.
latent_heat_evap : float
Latent heat of evaporation (2.5e6 * J/kg).
lon_range : (I) array
Gives the latitude for each of the model's grid cells.
m_t : (J, I) array
Eddy-diffusive horizontal moisture transport parameterization.
nlat : int
Number of latitudinal cells in the model, J.
nlon : int
Number of longitudinal cells in the model, I.
nu_heat : (J) array
Eddy diffusivity for heat.
nu_moisture : (J) array
Eddy diffusivity for moisture.
ocean_mask : (J, I) array
Binary array indicating which of the model's cells are over
oceans (`1`) or land (`0`).
p : (J, I) array
Precipitation for each of the model's cells (m/yr).
pcip_flag : (J, I) array
Binary array indicating whether precipitation is to occur (1)
in a given model cell.
q : (3, J, I) array
Specific humidity (kg/kg) for a given model cell for three
time steps n-1 (0, J, I), n (1, J, I), and n+1 (2, J, I).
q_lh : (J, I) array
Latent heat flux into the atmosphere.
q_lw : (J, I) array
Infrared emission flux.
q_rr : (J, I) array
Radiative flux into the atmosphere.
q_sh : (J, I) array
Sensible heat flux from the ocean.
q_ssw : (J, I) array
Shortwave radiation absorption flux.
q_t : (J, I) array
Eddy-diffusive horizontal heat transport parameterization.
rho_air : int or float
Surface air density (kg/m^3).
rho_sea : int or float
Sea surface density (kg/m^3).
solar_constant : int or float
The solar constant (W/m^3).
sst : (J, I) array
Sea-surface temperatures.
stanton : (J, I) array
The Stanton number.
stefanboltz : float
The Stefan-Boltzmann constant (W/(m^2 * K^4)).
steps_run : int
The number of steps the model has run through.
t : (3, J, I) array
Air temperature (K) for a given model cell for three
time steps n-1 (0, J, I), n (1, J, I), and n+1 (2, J, I).
time_step : float
The number of seconds that pass with a single model step.
wind : (J, I) array
Wind speed climatology (m/s).
x_step : (J) array
The distance (m) covered with each cell in the longitudinal
direction.
y_step : float
The distance (m) covered with each cell in the latitudinal
direction.
Methods
-------
evaluate_evap()
Evaluate model forcing terms at time n.
evaluate_forcing()
Evaluate model forcing terms at time n.
evaluate_pcip()
Evaluate the model precipitation variable at time n+1.
evaluate_q_diffusion()
Evaluate the model moisture diffusion at time n+1.
evaluate_t_diffusion()
Evaluate the model heat diffusion at time n+1.
global_mean(x)
Get the grid-area averaged mean for a model variable.
reset()
Reset the model's variables to initial state.
step(nstep=1, trace=False, euler_steps=10)
Run the model for a period of number of steps.
step_q_diffusion()
Update specific humidity at time n+1 from diffusion terms.
step_t_diffusion()
Update air temperature at time n+1 from diffusion terms.
step_t_forcing(euler=False)
Update air temperature at time n+1 from forcing terms.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general circulation
model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
Examples
--------
>>> import embm
>>> m = embm.Model()
>>> m.step(5000)
>>> m.t[1] # Air temperature for plotting, etc..
"""
def __init__(self):
self._initialize_constants()
self._initialize_variables()
def _initialize_constants(self):
"""
Notes
-----
This model breaks the scattering coefficient (C_0) from [1]_
into a coefficient for land and for sea.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
self.nlon = 72
self.nlat = 46
self.time_step = 3600 / 2
self.earth_radius = 6371 * 1e3
self.rho_air = 1.25
self.rho_sea = 1024
self.epsilon_sea = 0.65
self.epsilon_land = 0.3
self.c_rhoa = 1e3
self.emissivity_ocean = 0.96
self.h_atmosphere = 8400
self.h_humid = 1800
self.latent_heat_evap = 2.5e6
self.solar_constant = 1360
self.stefanboltz = 5.67e-8
self.lat_range = np.linspace(-90, 90, self.nlat, endpoint = True)
self.lon_range = np.linspace(-180, 180, self.nlon, endpoint = True)
self.x_step = (self.earth_radius * 2
* np.cos(self.lat_range * np.pi/180) * np.pi / self.nlon)
self.x_step[0] = 1; self.x_step[-1] = 1
self.y_step = self.earth_radius * 2 * np.pi / self.nlat
# TODO: This IO should use a method and be done in main().
self.ocean_mask = np.loadtxt("./data/mask.txt", dtype = "i")
self.wind = np.loadtxt("./data/wind.txt", dtype = "d")
self.sst = np.loadtxt("./data/sst.txt", dtype = "f")
self.sst[self.sst == -999] = np.nan
self.sst += 273.15 # Convert C to Kelvin.
def _initialize_variables(self):
self.steps_run = 0
self.t = np.ones((3, self.nlat, self.nlon)) * 273.15
self.q = np.zeros((3, self.nlat, self.nlon))
self._calc_diffusion_coefs()
self._calc_annual_shortwave()
self._calc_coalbedo()
self._scattering = np.zeros((self.nlat, self.nlon))
self._scattering[self.ocean_mask == 1] = self.epsilon_sea
self._scattering[self.ocean_mask == 0] = self.epsilon_land
self._calc_emissivity()
self._calc_pcip_flag
self.p = np.zeros(self.wind.shape)
def _calc_diffusion_coefs(self):
"""Set the eddy-diffusive coefficients for model latitudes.
Notes
-----
Heat diffusion and moisture diffusion parameterizations
(ν and κ, in [1]_, respectively) are plotted but the equation
is not given. We're using the below definition.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
rad = self.lat_range * np.pi / 180
sin_lat = np.sin(rad)
self.nu_heat = 3e6 * (0.81 - 1.08 * sin_lat**2
+ 0.74 * sin_lat**4)
abs_sin = np.abs(sin_lat)
self.nu_moisture = 1.7e6 * (1.9823
- 17.3501 * abs_sin
+ 117.2489 * abs_sin**2
- 274.1129 * abs_sin**3
+ 258.2244 * abs_sin**4
- 85.7967 * abs_sin**5)
def _calc_emissivity(self):
"""Set emissivities for model latitudes.
Notes
-----
Atmospheric and planetary emissivity are plotted in [1]_, but
no equation is given. We're using the below definition.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
rad = self.lat_range * np.pi/180
sin_lat = np.sin(rad)
self.emissivity_atmosphere = (0.8666
+ 0.0408 * sin_lat - 0.2553 * sin_lat**2
- 0.466 * sin_lat**3 + 0.9877 * sin_lat**4
+ 2.0257 * sin_lat**5 - 2.3374 * sin_lat**6
- 3.199 * sin_lat**7 + 2.8581 * sin_lat**8
+ 1.6070 * sin_lat**9 - 1.2685 * sin_lat**10)
self.emissivity_planet = (0.5531
- 0.1296 * sin_lat + 0.6796 * sin_lat**2
+ 0.7116 * sin_lat**3 - 2.794 * sin_lat**4
- 1.3592 * sin_lat**5 + 3.8831 * sin_lat**6
+ 0.8348 * sin_lat**7 - 1.9536 * sin_lat**8)
def _calc_annual_shortwave(self):
"""Set the annual shortwave radiation for model latitudes.
Notes
-----
The annual shortwave distribution is plotted in [1]_, but no
equation is given. We're defining it here as
S(φ) = 1.5*(1 - sin^2(φ)).
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
self.annual_shortwave = 1.5*(1 - np.sin(self.lat_range * np.pi/180)**2)
def _calc_coalbedo(self):
"""Set the co-albedo for model latitudes.
Notes
-----
The coalbedo (1 - α) is plotted in [1]_, but no
equation is given. Defined here as
(1 - α) = 0.7995 - 0.315*sin^2(φ).
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
self.coalbedo = 0.7995 - 0.315 * np.sin(self.lat_range * np.pi/180)**2
def _calc_diffusion(self, x, coef):
"""Calculate weighted diffusion.
Parameters
----------
x : array-like
Either `self.t` or `self.q`. Needs shape
(3, self.lat, self.lon).
coef : int or float
Weight coefficient for the gradient of `x`.
Returns
-------
array_like
Weighted-diffusion array shaped as (self.lat, self.lon).
Notes
-----
This is basically a lazy and cheaply vectorized approach to:
∇ • (coef ∇ x)
"""
# 1st derivative.
grad1 = np.gradient(x, self.y_step, self.x_step[:, np.newaxis])
# x component.
grad1[1] *= coef[:, np.newaxis]
grad1[1][:, 0] = (x[:, 1] - x[:, -1]) / (2*self.x_step)*coef
grad1[1][:, -1] = (x[:, 0] - x[:, -2]) / (2*self.x_step)*coef
# 2nd derivative.
grad2 = [np.gradient(grad1[0], self.y_step, self.x_step[:, np.newaxis])[0],
np.gradient(grad1[1], self.y_step, self.x_step[:, np.newaxis])[1]]
# y component.
grad2[0] *= coef[:, np.newaxis]
# x component.
grad2[1][:, 0] = (grad1[1][:, 1] - grad1[1][:, -1]) / (2*self.x_step)
grad2[1][:, -1] = (grad1[1][:, 0] - grad1[1][:, -2]) / (2*self.x_step)
return grad2[0] + grad2[1]
def _calc_pcip_flag(self):
"""Set precipitation flags.
Notes
-----
This is from eq. 13 and p113 of [1]_.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
rel_humidity = self.q[2] / specific_humidity(self.t[2])
out = np.zeros(rel_humidity.shape)
out[rel_humidity >= 0.85] = 1
self.pcip_flag = out
def reset(self):
"""Reset the model's variables to initial state.
"""
self._initialize_variables()
def evaluate_forcing(self):
"""Evaluate model forcing terms at time n.
Notes
-----
The Dalton number is from eq. 18 of [1]_.
`q_ssw` is from eq. 4 of [1]_.
`q_lw` is from eq. 5a of [1]_.
`q_rr` is from eq. 6 of [1]_.
`q_sh` is from eq. 7 of [1]_.
`q_lh` is from eq. 8 of [1]_.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
self.dalton = (1e-3 * (1.0022 - 0.0822 * (self.t[1]-self.sst)
+ 0.0266*self.wind))
self.stanton = 0.94 * self.dalton
self.q_ssw = (self.solar_constant/4 * self.annual_shortwave[:, np.newaxis]
* self.coalbedo[:, np.newaxis] * (1 - self._scattering))
self.q_lw = (self.emissivity_planet[:, np.newaxis]
* self.stefanboltz * self.t[1]**4)
self.q_rr = (self.emissivity_ocean * self.stefanboltz * self.sst**4
- self.emissivity_atmosphere[:, np.newaxis]*self.stefanboltz*self.t[1]**4)
self.q_rr[self.ocean_mask == 0] = 0
self.q_sh = (self.rho_air * self.stanton * self.c_rhoa * self.wind
* (self.sst - self.t[1]))
self.q_sh[self.ocean_mask == 0] = 0
self.q_lh = ((self.rho_sea/SECONDS_PER_YEAR)
* self.latent_heat_evap * self.p)
def evaluate_evap(self):
"""Evaluate model evaporation variable at time n.
Notes
-----
This is from eq. 11 of [1]_.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
self.e = ((self.rho_air * self.dalton * self.wind * SECONDS_PER_YEAR)
/self.rho_sea * (specific_humidity(self.sst) - self.q[1]))
self.e[self.ocean_mask == 0] = 0
def evaluate_pcip(self):
"""Evaluate the model precipitation variable at time n+1.
Notes
-----
This is from eq. 12 of [1]_.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
self._calc_pcip_flag()
self.p = ((self.rho_air * self.h_humid * SECONDS_PER_YEAR)
/(self.rho_sea*self.time_step) * self.pcip_flag
* (self.q[2] - 0.85*specific_humidity(self.t[2])))
self.q[2][self.pcip_flag == 1] = (0.85
* specific_humidity(self.t[2][self.pcip_flag == 1]))
def evaluate_t_diffusion(self):
"""Evaluate the model heat diffusion at time n+1.
Notes
-----
Defined in eq. 3 of [1]_.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
self.q_t = (self.rho_air * self.h_atmosphere * self.c_rhoa
* self._calc_diffusion(self.t[2], self.nu_heat))
def evaluate_q_diffusion(self):
"""Evaluate the model moisture diffusion at time n+1.
Notes
-----
Defined in eq. 10 of [1]_.
References
----------
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
self.m_t = (self.rho_air * self.h_humid
* self._calc_diffusion(self.q[2], self.nu_moisture))
def step_t_forcing(self, euler=False):
"""Update air temperature at time n+1 from forcing terms.
Parameters
----------
euler : bool
Indicates whether or not to do time differencing with a
Euler forward scheme or a leapfrog scheme.
Notes
-----
This uses a leapfrog/Euler-forward scheme. The majority of
work is done by a leapfrog scheme but this should be balanced
out by performing a Euler forward scheme-based step every now
and then (~10 steps with the model's default settings). See
[2]_ for a review of these methods.
References
----------
.. [1] Cushman-Roisin, B., and J. Beckers (2011), Introduction
to Geophysical Fluid Dynamics Physical and Numerical
Aspects, 2nd ed. Academic Press.
"""
if euler:
# Do Euler forward time differencing.
self.t[2] = (self.t[1] + self.time_step
/(self.rho_air * self.h_atmosphere * self.c_rhoa)
* (self.q_ssw - self.q_lw + self.q_rr + self.q_sh + self.q_lh))
else:
# Do leapfrog time differencing.
self.t[2] = (self.t[0] + 2*self.time_step
/(self.rho_air * self.h_atmosphere * self.c_rhoa)
* (self.q_ssw - self.q_lw + self.q_rr + self.q_sh + self.q_lh))
def step_t_diffusion(self):
"""Update air temperature at time n+1 from diffusion terms.
This uses the Matsuno predictor-corrector scheme. It needs to
be run two times. See [1]_ for a review.
References
----------
.. [1] Cushman-Roisin, B., and J. Beckers (2011), Introduction
to Geophysical Fluid Dynamics Physical and Numerical
Aspects, 2nd ed. Academic Press.
"""
self.t[2] += (self.time_step * self.q_t
/ (self.rho_air * self.h_atmosphere * self.c_rhoa))
self.t[2, 0, :] = self.t[2, 1, :].mean()
self.t[2, -1, :] = self.t[2, -2, :].mean()
def step_q_diffusion(self):
"""Update specific humidity at time n+1 from diffusion terms.
This uses the Matsuno predictor-corrector scheme. It needs to
be run two times. See [1]_ for a review.
References
----------
.. [1] Cushman-Roisin, B., and J. Beckers (2011), Introduction
to Geophysical Fluid Dynamics Physical and Numerical
Aspects, 2nd ed. Academic Press.
"""
self.q[2] += (self.time_step
* (self.m_t + (self.rho_sea * (self.e - self.p))/SECONDS_PER_YEAR)
/ (self.rho_air * self.h_humid))
self.q[2, 0, :] = self.q[2, 1, :].mean()
self.q[2, -1, :] = self.q[2, -2, :].mean()
def global_mean(self, x):
"""Get the grid-area averaged mean for a model variable.
"""
w = np.repeat(self.x_step * self.y_step, self.nlon)
return np.average(x.flat, weights = w)
def step(self, nstep=1, trace=False, euler_steps=10):
"""Run the model for a period of number of steps.
Parameters
----------
nstep : int, optional
The number of time steps to run through. Default is 1.
trace : bool, optional
Indicating whether you would like the global-mean specific
humidity, precipitation, and air temperature averages for
each time step to be stored and returned. Default is
`False`.
euler_steps : int, optional
After how many time steps the temperature forcing
integration should switch from a Leapfrog scheme to a
Euler forward scheme. The default is 10 steps.
Returns
-------
t_hist : array-like
Only returned if `trace = True`. Array giving the
evolution of the model's air temperature as the model
steps through time
q_hist : array-like
Only returned if `trace = True`. Array giving the
evolution of the model's specific humidity as the model
steps through time
p_hist : array-like
Only returned if `trace = True`. Array giving the
evolution of the model's precipitation as the model steps
through time.
Notes
-----
We're breaking down the contribution to changes in `t` and `q`
into separate time differencing schemes. This is a different
approach from that used in [1]_. See [2]_ for a review of
these methods.
References
----------
.. [2] Cushman-Roisin, B., and J. Beckers (2011), Introduction
to Geophysical Fluid Dynamics Physical and Numerical
Aspects, 2nd ed. Academic Press.
.. [1] Fanning, A. F., and A. J. Weaver (1996), An atmospheric
energy-moisture balance model: Climatology, interpentadal
climate change, and coupling to an ocean general
circulation model, J. Geophys. Res., 101(D10), 15111–15128,
doi:10.1029/96JD01017.
"""
if trace:
t_hist = np.zeros(nstep)
q_hist = np.zeros(nstep)
p_hist = np.zeros(nstep)
for i in range(nstep):
# Time step
self.evaluate_forcing()
self.evaluate_evap()
# Leapfrog/Euler-forward step
if i % euler_steps:
self.step_t_forcing(euler = True)
else:
self.step_t_forcing()
# Predictor step
self.evaluate_t_diffusion()
self.step_t_diffusion()
self.evaluate_q_diffusion()
self.step_q_diffusion()
# Corrector step
self.evaluate_t_diffusion()
self.step_t_diffusion()
self.evaluate_q_diffusion()
self.step_q_diffusion()
self.evaluate_pcip()
# Shifting one step forward in time.
for v in [self.t, self.q]:
v[0] = np.copy(v[1])
v[1] = np.copy(v[2])
# TODO: Check why we can't assign to v[2]. Something is off here?
# v[2] =
if trace:
t_hist[i] = self.global_mean(self.t[1])
q_hist[i] = self.global_mean(self.q[1])
p_hist[i] = self.global_mean(self.p)
self.steps_run += 1
if trace:
return t_hist, q_hist, p_hist