-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMOGDx.py
237 lines (198 loc) · 10.6 KB
/
MOGDx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
import pandas as pd
import numpy as np
import os
import sys
sys.path.insert(0, './MAIN/')
from utils import *
from GNN_MME import *
from train import *
import preprocess_functions
import matplotlib.pyplot as plt
from sklearn.model_selection import StratifiedKFold
import networkx as nx
import torch
from datetime import datetime
import joblib
import warnings
import gc
warnings.filterwarnings("ignore")
print("Finished Library Import \n")
def main(args):
# Check if output directory exists, if not create it
if not os.path.exists(args.output) :
os.makedirs(args.output, exist_ok=True)
# Specify the device to use
device = torch.device('cpu' if args.no_cuda else 'cuda') # Get GPU device name, else use CPU
print("Using %s device" % device)
get_gpu_memory()
# Load data and metadata
datModalities , meta = data_parsing(args.input , args.modalities , args.target , args.index_col)
# Load SNF graph
graph_file = args.input + '/' + '_'.join(args.modalities) + '_graph.graphml'
g = nx.read_graphml(graph_file)
meta = meta.loc[sorted(meta.index)]
# Generate K Fold splits
if args.no_shuffle :
skf = StratifiedKFold(n_splits=args.n_splits , shuffle=False)
else :
skf = StratifiedKFold(n_splits=args.n_splits , shuffle=True)
print(skf)
# Order model inputs and identify subjects in each modality
subjects_list = [list(set(g.nodes) & set(datModalities[mod].index)) for mod in datModalities]
h = [torch.from_numpy(datModalities[mod].loc[subjects_list[i]].to_numpy(dtype=np.float32)).to(device) for i , mod in enumerate(datModalities) ]
MME_input_shapes = [ datModalities[mod].shape[1] for mod in datModalities]
del datModalities
gc.collect()
# Get the unique labels in the metadata
labels = F.one_hot(torch.Tensor(list(meta.astype('category').cat.codes)).to(torch.int64)).to(device)
output_metrics = []
test_logits = []
test_labels = []
for i, (train_index, test_index) in enumerate(skf.split(meta.index, meta)) :
# Initialize model
model = GCN_MME(MME_input_shapes , args.latent_dim , args.decoder_dim , args.h_feats , len(node_subjects.unique())).to(device)
print(model)
print(g)
# Split training data into training and validation sets
train_index , val_index = train_test_split(
train_index, train_size=0.8, test_size=None, stratify=meta.iloc[train_index]
)
# Train the model
loss_plot = train(g, h , subjects_list , train_index , val_index , device , model , labels , 2000 , 1e-3 , 100)
plt.title(f'Loss for split {i}')
save_path = args.output + '/loss_plots/'
os.makedirs(save_path, exist_ok=True)
plt.savefig(f'{save_path}loss_split_{i}.png' , dpi = 200)
plt.clf()
# Evaluate the model
test_output_metrics = evaluate(test_index , device , g , h , subjects_list , model , labels )
print(
"Fold : {:01d} | Test Accuracy = {:.4f} | F1 = {:.4f} ".format(
i+1 , test_output_metrics[1] , test_output_metrics[2] )
)
# Save the test logits and labels for later analysis
test_logits.extend(test_output_metrics[-1][test_index])
test_labels.extend(labels[test_index])
# Save the output metrics and best performing model
output_metrics.append(test_output_metrics)
if i == 0 :
best_model = model
best_idx = i
elif output_metrics[best_idx][1] < test_output_metrics[1] :
best_model = model
best_idx = i
get_gpu_memory()
del model
gc.collect()
torch.cuda.empty_cache()
print('Clearing gpu memory')
get_gpu_memory()
# Save the output metrics to a file
accuracy = []
F1 = []
output_file = args.output + '/' + "test_metrics.txt"
with open(output_file , 'w') as f :
i = 0
for metric in output_metrics :
i += 1
f.write("Fold %i \n" % i)
f.write(f"acc = %2.3f , avg_prc = %2.3f , avg_recall = %2.3f , avg_f1 = %2.3f" %
(metric[1] , metric[3] , metric[4] , metric[2]))
f.write('\n')
accuracy.append(metric[1])
F1.append(metric[2])
f.write('-------------------------\n')
f.write("%i Fold Cross Validation Accuracy = %2.2f \u00B1 %2.2f \n" %(args.n_splits , np.mean(accuracy)*100 , np.std(accuracy)*100))
f.write("%i Fold Cross Validation F1 = %2.2f \u00B1 %2.2f \n" %(args.n_splits , np.mean(F1)*100 , np.std(F1)*100))
f.write('-------------------------\n')
print("%i Fold Cross Validation Accuracy = %2.2f \u00B1 %2.2f" %(5 , np.mean(accuracy)*100 , np.std(accuracy)*100))
print("%i Fold Cross Validation F1 = %2.2f \u00B1 %2.2f" %(5 , np.mean(F1)*100 , np.std(F1)*100))
# Get the current date
current_date = datetime.now()
# Extract month and day as string names
month = current_date.strftime('%B')[:3] # Full month name
day = current_date.day
save_path = args.output + '/Models/'
os.makedirs(save_path, exist_ok=True)
torch.save({
'model_state_dict': best_model.state_dict(),
# You can add more information to save, such as training history, hyperparameters, etc.
}, f'{save_path}GCN_MME_model_{month}{day}' )
if args.no_output_plots :
cmplt = confusion_matrix(test_logits , test_labels , meta.astype('category').cat.categories)
plt.title('Test Accuracy = %2.1f %%' % (np.mean(accuracy)*100))
output_file = args.output + '/' + "confusion_matrix.png"
plt.savefig(output_file , dpi = 300)
precision_recall_plot , all_predictions_conf = AUROC(test_logits, test_labels , meta)
output_file = args.output + '/' + "precision_recall.png"
precision_recall_plot.savefig(output_file , dpi = 300)
node_predictions = []
display_label = meta.astype('category').cat.categories
for pred in all_predictions_conf.argmax(1) :
node_predictions.append(display_label[pred])
pd.DataFrame({'Actual' : meta.loc[list(nx.get_node_attributes(g, 'idx').keys())] , 'Predicted' : node_predictions}).to_csv(args.output + '/Predictions.csv')
def construct_parser():
"""
Construct the argument parser for MOGDx.
Returns:
argparse.ArgumentParser: The argument parser object.
"""
# Training settings
parser = argparse.ArgumentParser(description='MOGDx')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--patience', type=float, default=100,
help='Early Stopping Patience (default: 100 batches of 5 -> equivalent of 100*5 = 500)')
#parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
# help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
#parser.add_argument('--seed', type=int, default=None, metavar='S',
# help='random seed (default: random number)')
#parser.add_argument('--log-interval', type=int, default=10, metavar='N',
# help='how many batches to wait before logging '
# 'training status')
parser.add_argument('--no-output-plots', action='store_false' , default=True,
help='Disables Confusion Matrix and TSNE plots')
parser.add_argument('--split-val', action='store_false' , default=True,
help='Disable validation split on AE and GNN')
parser.add_argument('--no-shuffle', action='store_true' , default=False,
help='Disable shuffling of index for K fold split')
parser.add_argument('--psn-only', action='store_true' , default=False,
help='Dont train on any node features')
parser.add_argument('--no-psn', action='store_true' , default=False,
help='Dont train on PSN (removal of edges)')
parser.add_argument('--val-split-size', default=0.85 , type=float , help='Validation split of training set in'
'each k fold split. Default of 0.85 is 60/10/30 train/val/test with a 10 fold split')
parser.add_argument('--index-col' , type=str , default='',
help ='Name of column in input data which refers to index.'
'Leave blank if none.')
parser.add_argument('--n-splits' , default=10 , type=int, help='Number of K-Fold'
'splits to use')
parser.add_argument('--h-feats' , default=64 , type=int , help ='Integer specifying hidden dim of GNN'
'specifying GNN layer size')
parser.add_argument('--decoder-dim' , default=64 , type=int , help ='Integer specifying dim of common '
'layer to all modalities')
#parser.add_argument('--layers' , default=[64 , 64], nargs="+" , type=int , help ='List of integrs'
# 'specifying GNN layer sizes')
#parser.add_argument('--layer-activation', default=['elu' , 'elu'] , nargs="+" , type=str , help='List of activation'
# 'functions for each GNN layer')
parser.add_argument('-i', '--input', required=True, help='Path to the '
'input data for the model to read')
parser.add_argument('-o', '--output', required=True, help='Path to the '
'directory to write output to')
parser.add_argument('-mod', '--modalities', required=True, help='Name of the'
'modalities to include in the integration. Must be a list of strings')
parser.add_argument('-ld' , '--latent-dim', required=True, nargs="+", type=int , help='List of integers '
'corresponding to the length of hidden dims of each data modality')
parser.add_argument('--target' , required = True , help='Column name referring to the'
'disease classification label')
return parser
# Run the main function
if __name__ == '__main__':
parser = construct_parser()
args = parser.parse_args()
main(args)