forked from isohrab/Pupil-locator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinferno.py
203 lines (155 loc) · 6.14 KB
/
inferno.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import os
import time
import cv2
import numpy as np
import tensorflow.compat.v1 as tf
from config import config
from logger import Logger
from models import Simple, NASNET, Inception, GAP, YOLO
from utils import annotator, change_channel, gray_normalizer
tf.disable_v2_behavior()
def load_model(session, m_type, m_name, logger):
# load the weights based on best loss
best_dir = "best_loss"
# check model dir
model_path = "models/" + m_name
path = os.path.join(model_path, best_dir)
if not os.path.exists(path):
raise FileNotFoundError
if m_type == "simple":
model = Simple(m_name, config, logger)
elif m_type == "YOLO":
model = YOLO(m_name, config, logger)
elif m_type == "GAP":
model = GAP(m_name, config, logger)
elif m_type == "NAS":
model = NASNET(m_name, config, logger)
elif m_type == "INC":
model = Inception(m_name, config, logger)
else:
raise ValueError
# load the best saved weights
ckpt = tf.train.get_checkpoint_state(path)
if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
logger.log('Reloading model parameters..')
model.restore(session, ckpt.model_checkpoint_path)
else:
raise ValueError('There is no best model with given model')
return model
def rescale(image):
"""
If the input video is other than network size, it will resize the input video
:param image: a frame form input video
:return: scaled down frame
"""
scale_side = max(image.shape)
# image width and height are equal to 192
scale_value = config["input_width"] / scale_side
# scale down or up the input image
scaled_image = cv2.resize(image, dsize=None, fx=scale_value, fy=scale_value)
# convert to numpy array
scaled_image = np.asarray(scaled_image, dtype=np.uint8)
# one of pad should be zero
w_pad = int((config["input_width"] - scaled_image.shape[1]) / 2)
h_pad = int((config["input_width"] - scaled_image.shape[0]) / 2)
# create a new image with size of: (config["image_width"], config["image_height"])
new_image = np.ones((config["input_width"], config["input_height"]), dtype=np.uint8) * 250
# put the scaled image in the middle of new image
new_image[h_pad:h_pad + scaled_image.shape[0], w_pad:w_pad + scaled_image.shape[1]] = scaled_image
return new_image
def upscale_preds(_preds, _shapes):
"""
Get the predictions and upscale them to original size of video
:param preds:
:param shapes:
:return: upscales x and y
"""
# we need to calculate the pads to remove them from predicted labels
pad_side = np.max(_shapes)
# image width and height are equal to 384
downscale_value = config["input_width"] / pad_side
scaled_height = _shapes[0] * downscale_value
scaled_width = _shapes[1] * downscale_value
# one of pad should be zero
w_pad = (config["input_width"] - scaled_width) / 2
h_pad = (config["input_width"] - scaled_height) / 2
# remove the pas from predicted label
x = _preds[0] - w_pad
y = _preds[1] - h_pad
w = _preds[2]
# calculate the upscale value
upscale_value = pad_side / config["input_height"]
# upscale preds
x = x * upscale_value
y = y * upscale_value
w = w * upscale_value
return x, y, w
# load a the model with the best saved state from file and predict the pupil location
# on the input video. finaly save the video with the predicted pupil on disk
def main(m_type, m_name, logger, video_path=None, write_output=True):
with tf.Session() as sess:
# load best model
model = load_model(sess, m_type, m_name, logger)
# check input source is a file or camera
if video_path == None:
video_path = 0
# load the video or camera
cap = cv2.VideoCapture(video_path)
ret = True
counter = 0
tic = time.time()
frames = []
preds = []
while ret:
ret, frame = cap.read()
if ret:
# Our operations on the frame come here
frames.append(frame)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
f_shape = frame.shape
if frame.shape[0] != 192:
frame = rescale(frame)
image = gray_normalizer(frame)
image = change_channel(image, config["input_channel"])
[p] = model.predict(sess, [image])
x, y, w = upscale_preds(p, f_shape)
preds.append([x, y, w])
# frames.append(gray)
counter += 1
toc = time.time()
print("{0:0.2f} FPS".format(counter / (toc - tic)))
# get the video size
video_size = frames[0].shape[0:2]
if write_output:
# prepare a video write to show the result
video = cv2.VideoWriter("predicted_video.avi", cv2.VideoWriter_fourcc(*"XVID"), 30,
(video_size[1], video_size[0]))
for i, img in enumerate(frames):
labeled_img = annotator((0, 250, 0), img, *preds[i])
video.write(labeled_img)
# close the video
cv2.destroyAllWindows()
video.release()
print("Done...")
if __name__ == "__main__":
class_ = argparse.ArgumentDefaultsHelpFormatter
parser = argparse.ArgumentParser(description=__doc__,
formatter_class=class_)
parser.add_argument('--model_type',
help="INC, YOLO, simple",
default="INC")
parser.add_argument('--model_name',
help="name of saved model (3A4Bh-Ref25)",
default="3A4Bh-Ref25")
parser.add_argument('video_path',
help="path to video file, empty for camera")
args = parser.parse_args()
# model_name = args.model_name
model_name = args.model_name
model_type = args.model_type
video_path = args.video_path
# initial a logger
logger = Logger(model_type, model_name, "", config, dir="models/")
logger.log("Start inferring model...")
main(model_type, model_name, logger, video_path)