-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAccuracy.py
152 lines (142 loc) · 4.4 KB
/
Accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import json
import random
import time
from pathlib import Path
us_state_abbrev = {
'Alabama': 'AL',
'Alaska': 'AK',
'Arizona': 'AZ',
'Arkansas': 'AR',
'California': 'CA',
'Colorado': 'CO',
'Connecticut': 'CT',
'Delaware': 'DE',
'District of Columbia': 'DC',
'Florida': 'FL',
'Georgia': 'GA',
'Hawaii': 'HI',
'Idaho': 'ID',
'Illinois': 'IL',
'Indiana': 'IN',
'Iowa': 'IA',
'Kansas': 'KS',
'Kentucky': 'KY',
'Louisiana': 'LA',
'Maine': 'ME',
'Maryland': 'MD',
'Massachusetts': 'MA',
'Michigan': 'MI',
'Minnesota': 'MN',
'Mississippi': 'MS',
'Missouri': 'MO',
'Montana': 'MT',
'Nebraska': 'NE',
'Nevada': 'NV',
'New Hampshire': 'NH',
'New Jersey': 'NJ',
'New Mexico': 'NM',
'New York': 'NY',
'North Carolina': 'NC',
'North Dakota': 'ND',
'Ohio': 'OH',
'Oklahoma': 'OK',
'Oregon': 'OR',
'Pennsylvania': 'PA',
'Puerto Rico': 'PR',
'Rhode Island': 'RI',
'South Carolina': 'SC',
'South Dakota': 'SD',
'Tennessee': 'TN',
'Texas': 'TX',
'Utah': 'UT',
'Vermont': 'VT',
'Virgin Islands': 'VI',
'Virginia': 'VA',
'Washington': 'WA',
'West Virginia': 'WV',
'Wisconsin': 'WI',
'Wyoming': 'WY'
}
random.seed(100)
path = Path('C:/Data/Python/JobLoss')
ind_mapping_reverse = {}
with open(path / 'ProcessedSimilarRemoved.json') as f:
data_words = json.load(f)
ind = 0
for tweet in data_words:
ind_mapping_reverse[tweet['ind']] = ind
ind += 1
def random_subset(x):
with open(path / ('Locations/Topic[0, 12].txt'), 'r') as f:
indices = f.read().split('\n')
indices.pop()
indices = random.sample(indices, x)
tweets = []
for ind in indices:
ind = ind_mapping_reverse[int(ind)]
tweet = data_words[ind]
tweets.append([tweet['id'], ''])
with open(path / 'Locations/Sample.txt', 'w') as f:
json.dump(tweets, f, indent=4)
def single_tweet(tweet_id):
data = []
with open(path / 'Tweets/AprilMay.jsonl', encoding='utf-8') as f:
for line in f:
data.append(json.loads(line.rstrip('\n|\r')))
# for getting tweet data from deleted tweets
for tweet in data:
if tweet['id'] == tweet_id:
print(tweet)
def check_accuracy(x):
correct = 0
with open(path / 'Locations/Sample.txt') as f:
sample = json.load(f)
with open(path / 'Locations/Locations.json') as f:
locations = json.load(f)
with open(path / ('Locations/Topic[0, 12].txt'), 'r') as f:
indices = f.read().split('\n')
indices.pop()
indices = random.sample(indices, x)
sample_ind = 0
for sample_ind in range(x):
ind = indices[sample_ind]
if ind in locations:
tweet = locations[ind]
tweet_states = set()
if tweet['twitter'] :
abbrev = us_state_abbrev[tweet['twitter']]
tweet_states.add(abbrev)
elif tweet['user']:
abbrev = us_state_abbrev[tweet['user']]
tweet_states.add(abbrev)
elif tweet['bio']:
for location in tweet['bio']:
abbrev = us_state_abbrev[location]
tweet_states.add(abbrev)
elif tweet['text']:
for location in tweet['text']:
abbrev = us_state_abbrev[location]
tweet_states.add(abbrev)
elif tweet['tagged_users']:
for location in tweet['tagged_users']:
abbrev = us_state_abbrev[location]
tweet_states.add(abbrev)
elif tweet['tagged_bios']:
for location in tweet['tagged_bios']:
abbrev = us_state_abbrev[location]
tweet_states.add(abbrev)
if len(tweet_states) > 1:
print('Too much')
else:
if list(tweet_states)[0] == sample[sample_ind][1]:
correct += 1
else:
print('Wrong')
else:
print('Not included')
sample_ind += 1
print(correct)
if __name__ == '__main__':
# random_subset(100)
# single_tweet(1265288097216036864)
check_accuracy(100)