-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathutils.py
399 lines (261 loc) · 10.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Authors:
# Christian F. Baumgartner (c.f.baumgartner@gmail.com)
# Lisa M. Koch (lisa.margret.koch@gmail.com)
import nibabel as nib
import numpy as np
import os
import logging
from skimage import measure, transform
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
from medpy.metric import jc
try:
import cv2
except:
logging.warning('Could not import opencv. Augmentation functions will be unavailable.')
else:
def rotate_image(img, angle, interp=cv2.INTER_LINEAR):
rows, cols = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, 1)
return cv2.warpAffine(img, rotation_matrix, (cols, rows), flags=interp)
def rotate_image_as_onehot(img, angle, nlabels, interp=cv2.INTER_LINEAR):
onehot_output = rotate_image(convert_to_onehot(img, nlabels=nlabels), angle, interp)
return np.argmax(onehot_output, axis=-1)
def resize_image(im, size, interp=cv2.INTER_LINEAR):
im_resized = cv2.resize(im, (size[1], size[0]), interpolation=interp) # swap sizes to account for weird OCV API
return im_resized
def resize_image_as_onehot(im, size, nlabels, interp=cv2.INTER_LINEAR):
onehot_output = resize_image(convert_to_onehot(im, nlabels), size, interp=interp)
return np.argmax(onehot_output, axis=-1)
def deformation_to_transformation(dx, dy):
nx, ny = dx.shape
# grid_x, grid_y = np.meshgrid(np.arange(nx), np.arange(ny))
grid_y, grid_x = np.meshgrid(np.arange(nx), np.arange(ny), indexing="ij") # Robin's change to make it work with non-square images
map_x = (grid_x + dx).astype(np.float32)
map_y = (grid_y + dy).astype(np.float32)
return map_x, map_y
def dense_image_warp(im, dx, dy, interp=cv2.INTER_LINEAR, do_optimisation=True):
map_x, map_y = deformation_to_transformation(dx, dy)
# The following command converts the maps to compact fixed point representation
# this leads to a ~20% increase in speed but could lead to accuracy losses
# Can be uncommented
if do_optimisation:
map_x, map_y = cv2.convertMaps(map_x, map_y, dstmap1type=cv2.CV_16SC2)
return cv2.remap(im, map_x, map_y, interpolation=interp, borderMode=cv2.BORDER_REFLECT) #borderValue=float(np.min(im)))
def dense_image_warp_as_onehot(im, dx, dy, nlabels, interp=cv2.INTER_LINEAR, do_optimisation=True):
onehot_output = dense_image_warp(convert_to_onehot(im, nlabels), dx, dy, interp, do_optimisation=do_optimisation)
return np.argmax(onehot_output, axis=-1)
def find_floor_in_list(l, t):
# Linear, because not important enough to optimize
max_smallest = -np.inf
argmax_smallest = None
for i, n in enumerate(l):
if t >= n and n > max_smallest:
max_smallest = n
argmax_smallest = i
if argmax_smallest is None:
raise ValueError("All elements in list l are larger than t=%d" % t)
return max_smallest, argmax_smallest
def convert_to_onehot(lblmap, nlabels):
output = np.zeros((lblmap.shape[0], lblmap.shape[1], nlabels))
for ii in range(nlabels):
output[:,:,ii] = (lblmap == ii).astype(np.uint8)
return output
def convert_batch_to_onehot(lblbatch, nlabels):
out = []
for ii in range(lblbatch.shape[0]):
lbl = convert_to_onehot(lblbatch[ii,...], nlabels)
out.append(lbl)
return np.asarray(out)
def ncc(a,v, zero_norm=True):
a = a.flatten()
v = v.flatten()
if zero_norm:
a = (a - np.mean(a)) / (np.std(a) * len(a))
v = (v - np.mean(v)) / np.std(v)
else:
a = (a) / (np.std(a) * len(a))
v = (v) / np.std(v)
return np.correlate(a,v)
def norm_l2(a,v):
a = a.flatten()
v = v.flatten()
a = (a - np.mean(a)) / (np.std(a) * len(a))
v = (v - np.mean(v)) / np.std(v)
return np.mean(np.sqrt(a**2 + v**2))
def all_argmax(arr, axis=None):
return np.argwhere(arr == np.amax(arr, axis=axis))
def makefolder(folder):
'''
Helper function to make a new folder if doesn't exist
:param folder: path to new folder
:return: True if folder created, False if folder already exists
'''
if not os.path.exists(folder):
os.makedirs(folder)
return True
return False
def load_nii(img_path):
'''
Shortcut to load a nifti file
'''
nimg = nib.load(img_path)
return nimg.get_data(), nimg.affine, nimg.header
def save_nii(img_path, data, affine, header):
'''
Shortcut to save a nifty file
'''
nimg = nib.Nifti1Image(data, affine=affine, header=header)
nimg.to_filename(img_path)
def create_and_save_nii(data, img_path):
img = nib.Nifti1Image(data, np.eye(4))
nib.save(img, img_path)
class Bunch:
# Useful shortcut for making struct like contructs
# Example:
# mystruct = Bunch(a=1, b=2)
# print(mystruct.a)
# >>> 1
def __init__(self, **kwds):
self.__dict__.update(kwds)
def convert_to_uint8(image):
image = image - image.min()
image = 255.0*np.divide(image.astype(np.float32),image.max())
return image.astype(np.uint8)
#
def convert_to_uint8_rgb_fixed(image):
image = (image + 1) * 127.5
image = np.clip(image, 0, 255)
return image.astype(np.uint8)
def normalise_image(image):
'''
make image zero mean and unit standard deviation
'''
img_o = np.float32(image.copy())
m = np.mean(img_o)
s = np.std(img_o)
return np.divide((img_o - m), s)
def map_image_to_intensity_range(image, min_o, max_o, percentiles=0):
# If percentile = 0 uses min and max. Percentile >0 makes normalisation more robust to outliers.
if image.dtype in [np.uint8, np.uint16, np.uint32]:
assert min_o >= 0, 'Input image type is uintXX but you selected a negative min_o: %f' % min_o
if image.dtype == np.uint8:
assert max_o <= 255, 'Input image type is uint8 but you selected a max_o > 255: %f' % max_o
min_i = np.percentile(image, 0 + percentiles)
max_i = np.percentile(image, 100 - percentiles)
image = (np.divide((image - min_i), max_i - min_i) * (max_o - min_o) + min_o).copy()
image[image > max_o] = max_o
image[image < min_o] = min_o
return image
def map_images_to_intensity_range(X, min_o, max_o, percentiles=0):
X_mapped = np.zeros(X.shape, dtype=np.float32)
for ii in range(X.shape[0]):
Xc = X[ii,...]
X_mapped[ii,...] = map_image_to_intensity_range(Xc, min_o, max_o, percentiles)
return X_mapped.astype(np.float32)
def normalise_images(X):
'''
Helper for making the images zero mean and unit standard deviation i.e. `white`
'''
X_white = np.zeros(X.shape, dtype=np.float32)
for ii in range(X.shape[0]):
Xc = X[ii,...]
X_white[ii,...] = normalise_image(Xc)
return X_white.astype(np.float32)
def jaccard_onehot(pred, gt):
# assuming last dimension is classes
intersection = np.sum(pred*gt)
pred_count = np.sum(pred)
gt_count = np.sum(gt)
# FN = np.sum((1-pred)*gt)
# FP = np.sum(pred*(1-gt))
#
# return TP / (TP + FN + FP)
return intersection / (pred_count + gt_count - intersection)
def generalised_energy_distance(sample_arr, gt_arr, nlabels, **kwargs):
def dist_fct(m1, m2):
label_range = kwargs.get('label_range', range(nlabels))
per_label_iou = []
for lbl in label_range:
# assert not lbl == 0 # tmp check
m1_bin = (m1 == lbl)*1
m2_bin = (m2 == lbl)*1
if np.sum(m1_bin) == 0 and np.sum(m2_bin) == 0:
per_label_iou.append(1)
elif np.sum(m1_bin) > 0 and np.sum(m2_bin) == 0 or np.sum(m1_bin) == 0 and np.sum(m2_bin) > 0:
per_label_iou.append(0)
else:
per_label_iou.append(jc(m1_bin, m2_bin))
# print(1-(sum(per_label_iou) / nlabels))
return 1-(sum(per_label_iou) / nlabels)
"""
:param sample_arr: expected shape N x X x Y
:param gt_arr: M x X x Y
:return:
"""
N = sample_arr.shape[0]
M = gt_arr.shape[0]
d_sy = []
d_ss = []
d_yy = []
for i in range(N):
for j in range(M):
# print(dist_fct(sample_arr[i,...], gt_arr[j,...]))
d_sy.append(dist_fct(sample_arr[i,...], gt_arr[j,...]))
for i in range(N):
for j in range(N):
# print(dist_fct(sample_arr[i,...], sample_arr[j,...]))
d_ss.append(dist_fct(sample_arr[i,...], sample_arr[j,...]))
for i in range(M):
for j in range(M):
# print(dist_fct(gt_arr[i,...], gt_arr[j,...]))
d_yy.append(dist_fct(gt_arr[i,...], gt_arr[j,...]))
return (2./(N*M))*sum(d_sy) - (1./N**2)*sum(d_ss) - (1./M**2)*sum(d_yy)
# import matplotlib.pyplot as plt
def variance_ncc_dist(sample_arr, gt_arr):
def pixel_wise_xent(m_samp, m_gt, eps=1e-8):
log_samples = np.log(m_samp + eps)
return -1.0*np.sum(m_gt*log_samples, axis=-1)
"""
:param sample_arr: expected shape N x X x Y
:param gt_arr: M x X x Y
:return:
"""
mean_seg = np.mean(sample_arr, axis=0)
N = sample_arr.shape[0]
M = gt_arr.shape[0]
sX = sample_arr.shape[1]
sY = sample_arr.shape[2]
E_ss_arr = np.zeros((N,sX,sY))
for i in range(N):
E_ss_arr[i,...] = pixel_wise_xent(sample_arr[i,...], mean_seg)
# print('pixel wise xent')
# plt.imshow( E_ss_arr[i,...])
# plt.show()
E_ss = np.mean(E_ss_arr, axis=0)
E_sy_arr = np.zeros((M,N, sX, sY))
for j in range(M):
for i in range(N):
E_sy_arr[j,i, ...] = pixel_wise_xent(sample_arr[i,...], gt_arr[j,...])
E_sy = np.mean(E_sy_arr, axis=1)
ncc_list = []
for j in range(M):
ncc_list.append(ncc(E_ss, E_sy[j,...]))
return (1/M)*sum(ncc_list)
def histogram_equalization(img):
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
# -----Splitting the LAB image to different channels-------------------------
l, a, b = cv2.split(lab)
# -----Applying CLAHE to L-channel-------------------------------------------
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
cl = clahe.apply(l)
# -----Merge the CLAHE enhanced L-channel with the a and b channel-----------
limg = cv2.merge((cl, a, b))
# -----Converting image from LAB Color model to RGB model--------------------
final = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
return final
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
return np.exp(x) / np.sum(np.exp(x), axis=-1, keepdims=True)
def list_mean(lst):
N = len(lst)
return (1./N)*sum(lst)