forked from Hrushi11/AI_Visual_Stream
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHandBackend.py
166 lines (128 loc) · 4.54 KB
/
HandBackend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import cv2
import math
import time
import mediapipe as mp
import numpy as np
class HandDetector():
def __init__(self, mode=False, maxHands=2, complexity=1, detectionCon=0.5, trackCon=0.5):
self.mode = mode
self.maxHands = maxHands
self.trackCon = trackCon
self.complexity = complexity
self.detectionCon = detectionCon
self.overlayList = []
self.state_circle = 0
self.folderPath = "Real"
self.myList = os.listdir(self.folderPath)
# For detecting hands
self.mpHands = mp.solutions.hands
self.mpDraw = mp.solutions.drawing_utils
self.hands = self.mpHands.Hands(self.mode, self.maxHands, self.complexity, self.detectionCon, self.trackCon)
def findHands(self, img, draw=True):
# Required to resize the video from an external media
# img = cv2.resize(img, (800, 400), interpolation=cv2.INTER_AREA)
img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(img_RGB)
print(self.results.multi_hand_landmarks)
if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, handLms, self.mpHands.HAND_CONNECTIONS)
return img
def findPosition(self, img, handNo=0, draw=True, pos=0):
lmlist = []
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks[handNo]
for id, lm in enumerate(myHand.landmark):
# print(id, lm)
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
lmlist.append([id, cx, cy])
if draw:
cv2.circle(img, (lmlist[pos][1], lmlist[pos][2]), 10, (255, 0, 255), cv2.FILLED)
return lmlist, img
def join(self, img, lmlist, pos1=8, pos2=12, draw=True):
length =math.hypot((lmlist[pos1][1] - lmlist[pos2][1]), (lmlist[pos1][2] - lmlist[pos2][2]))
state = 0
if length < 25:
if draw:
cv2.circle(img, (lmlist[pos1][1], lmlist[pos1][2]), 5, (255, 0, 0), cv2.FILLED)
state = 1
return img, state
def AddImgs(self, img, num=0, init_h=0, init_w=0):
c1, c2, r = (760, 25), (810, 25), 20
cv2.circle(img, c1, radius=r, color=(0, 255, 0), thickness=2)
cv2.circle(img, c2, radius=r, color=(0, 0, 255), thickness=2)
for imPath in self.myList:
image = cv2.imread(f"{self.folderPath}/{imPath}")
image = cv2.resize(image, (240, 200))
self.overlayList.append(image)
if len(self.overlayList) > num:
h, w, c = self.overlayList[num].shape
img[init_h:h+init_h, init_w:w+init_w] = self.overlayList[num]
else:
h, w, c = self.overlayList[0].shape
img[init_h:h + init_h, init_w:w+init_w] = self.overlayList[0]
return img
def feed_check(self, num):
arr = self.overlayList
if not (num <= len(arr)):
num %= len(arr)
return num
def circle_check(self, img, arr, lmlist):
# assert len(arr) == 3
c1, c2, r = (760, 25), (810, 25), 20
img, state = self.join(img, lmlist)
if ((arr[1] - c1[0]) ** 2) + ((arr[2] - c1[1]) ** 2) < r:
if state:
cv2.circle(img, c1, radius=r, color=(0, 255, 0), thickness=-1)
self.state_circle -= 1 # Previous
if ((arr[1] - c2[0]) ** 2) + ((arr[2] - c2[1]) ** 2) < r:
if state:
cv2.circle(img, c2, radius=r, color=(0, 0, 255), thickness=-1)
self.state_circle += 1 # Forward
return img
def prev_next(self, img, init_h=0, init_w=0):
num = self.feed_check(self.state_circle)
h, w, c = self.overlayList[num].shape
img[init_h:h + init_h, init_w:w + init_w] = self.overlayList[num]
return img
def main():
cap = cv2.VideoCapture(0)
cap.set(3, 924)
cap.set(4, 800)
cap.set(10, 130)
pTime, pTimeL = 0, 0
detector = HandDetector()
img_h, img_w = 42, 16
while True:
cTimeL = time.time()
res, img = cap.read()
img = cv2.flip(img, 1)
cTime = time.time()
img = detector.findHands(img, draw=False)
img = detector.AddImgs(img, init_h=img_h, init_w=img_w)
lmlist, img = detector.findPosition(img, pos=12, draw=False)
if lmlist:
img, state = detector.join(img, lmlist)
img = detector.circle_check(img, lmlist[8], lmlist)
img = detector.prev_next(img, img_h, img_w)
# FPS
if (cTime - pTime):
fps = 1 / (cTime - pTime)
pTime = cTime
cv2.putText(img, f"FPS: {str(int(fps))}", org=(7, 25), fontFace=cv2.FONT_HERSHEY_PLAIN,
fontScale=1, color=(0, 0, 0), thickness=1)
# Latency
if (cTimeL - pTimeL):
latency = np.round((cTimeL - pTimeL), 4)
pTimeL = cTimeL
cv2.putText(img, f"Latency: {str(latency)}s", org=(97, 25), fontFace=cv2.FONT_HERSHEY_PLAIN,
fontScale=1, color=(0, 0, 0), thickness=1)
# img = detector.prev_next(img, lmlist)
cv2.imshow("WebCam", img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
if __name__ == "__main__":
main()