Skip to content

Latest commit

 

History

History
196 lines (168 loc) · 7.67 KB

README.md

File metadata and controls

196 lines (168 loc) · 7.67 KB

MSVI

Website: https://asmae-toumi.github.io/MSVI/

The goal of the MSVI package is to provide researchers and analysts with health and socioeconomic data at the state, metropolitan or county-level.

The MSVI package contains:

Installation

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("asmae-toumi/MSVI")

AHRF

View raw clinician rate and clinician rate per 100,000 people at the state and county level by type of clinician.

library(MSVI)
library(tidyverse)

ahrf %>% 
  filter(year_represented_by_variable == "2016") %>% 
  group_by(state, variable) %>% 
  count() 
#> # A tibble: 972 x 3
#> # Groups:   state, variable [972]
#>    state   variable                  n
#>    <chr>   <chr>                 <int>
#>  1 Alabama Dentist                  67
#>  2 Alabama DO, All                  67
#>  3 Alabama Family Medicine, DO      67
#>  4 Alabama Family Medicine, MD      67
#>  5 Alabama General Practice, DO     67
#>  6 Alabama General Practice, MD     67
#>  7 Alabama Internal Medicine, DO    67
#>  8 Alabama Internal Medicine, MD    67
#>  9 Alabama MD, All                  67
#> 10 Alabama Nurse Practitioner       67
#> # … with 962 more rows

CMS

The CMS data contains all-cause hospitalizations, all-cause readmissions, overall and composite PQI (Prevention Quality Index) and all emergency visits by county and state.

cms %>% 
  filter(condition == "All Emergency Department Visits") %>% 
  group_by(county, ) %>% 
  summarize(total_ed = sum(analysis_value)) %>% 
  top_n(5)
#> # A tibble: 5 x 2
#>   county            total_ed
#>   <chr>                <dbl>
#> 1 Franklin County      17283
#> 2 Jackson County       16234
#> 3 Jefferson County     18103
#> 4 Lincoln County       15529
#> 5 Washington County    20706

Social Vulnerability Index

CDC developed the SVI to “help public health officials and emergency response planners identify and map the communities that will most likely need support before, during, and after a hazardous event.”. It ranks counties vulnerability by the following themes: socioeconomic status, household Composition & disability, minority status & language, housing type & transportation, and an overall ranking. (Source for county-level data: https://www.atsdr.cdc.gov/placeandhealth/svi/index.html)

svi_ranking %>%
  slice_max(overall_ranking, n = 20) 
#> # A tibble: 20 x 7
#>     fips name  socioeconomic household_disab… minority_langua… housing_transpo…
#>    <dbl> <chr>         <dbl>            <dbl>            <dbl>            <dbl>
#>  1 48047 broo…         0.999            0.966            0.994            0.991
#>  2 46060 <NA>          0.990            0.725            0.866            0.990
#>  3 48127 dimm…         0.995            0.994            0.990            0.932
#>  4 48131 duva…         0.982            0.999            0.981            0.898
#>  5 35029 luna…         0.995            0.950            0.990            0.977
#>  6 48507 zava…         0.985            0.986            0.992            0.933
#>  7 35006 cibo…         0.957            0.968            0.909            0.996
#>  8 48377 pres…         0.994            0.997            0.998            0.703
#>  9  6025 impe…         0.985            0.776            0.998            0.987
#> 10 22039 evan…         0.983            0.978            0.826            0.969
#> 11 33100 <NA>          0.979            0.314            0.971            0.971
#> 12 48109 culb…         0.955            0.991            0.986            0.884
#> 13  5017 chic…         0.936            0.991            0.827            0.986
#> 14 41045 malh…         0.915            0.887            0.903            0.999
#> 15 22117 wash…         0.974            0.984            0.811            0.964
#> 16  1005 barb…         0.978            0.915            0.856            0.989
#> 17  4017 nava…         0.960            0.957            0.934            0.962
#> 18 28163 yazo…         0.981            0.942            0.935            0.940
#> 19  1105 perr…         0.988            0.956            0.624            0.994
#> 20 35380 <NA>          0.997            0.552            0.822            0.932
#> # … with 1 more variable: overall_ranking <dbl>

Definitive healthcare

Data on typical bed capacity and average yearly bed utilization of hospitals across the United States provided by Definitive Healthcare. (Source: https://coronavirus-resources.esri.com/datasets/)

library(skimr)

definitive_hc %>% 
  group_by(state_name) %>% 
  summarize(mean_icu_beds = mean(num_icu_beds))
#> # A tibble: 53 x 2
#>    state_name           mean_icu_beds
#>    <chr>                        <dbl>
#>  1 Alabama                      13.6 
#>  2 Alaska                        6.89
#>  3 Arizona                      14.8 
#>  4 Arkansas                      8.54
#>  5 California                   18.5 
#>  6 Colorado                     12.0 
#>  7 Connecticut                  20.6 
#>  8 Delaware                     16.5 
#>  9 District of Columbia         29.1 
#> 10 Florida                      22.7 
#> # … with 43 more rows

County health rankings

Data provided by The County Health Rankings & Roadmaps program on health outcomes and health factors. (Source: https://www.countyhealthrankings.org/explore-health-rankings/measures-data-sources/2020-measures)

county_health_rankings %>%
  select(state_abbreviation, housing_cost_burden = severe_housing_cost_burden_raw_value) %>% 
  group_by(state_abbreviation) %>% 
  slice_min(housing_cost_burden)
#> # A tibble: 51 x 2
#> # Groups:   state_abbreviation [51]
#>    state_abbreviation housing_cost_burden
#>    <chr>                            <dbl>
#>  1 AK                              0.0325
#>  2 AL                              0.0705
#>  3 AR                              0.0622
#>  4 AZ                              0.0359
#>  5 CA                              0.102 
#>  6 CO                              0.0475
#>  7 CT                              0.125 
#>  8 DC                              0.184 
#>  9 DE                              0.128 
#> 10 FL                              0.0775
#> # … with 41 more rows