-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrue_recognition.py
246 lines (216 loc) · 8.64 KB
/
true_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import io
import os
import time as time
# Imports the Google Cloud client library
from google.cloud import vision
from google.cloud.vision import types
import cv2
client = vision.ImageAnnotatorClient()
def get_image_info(image_path):
client = vision.ImageAnnotatorClient()
file_name = os.path.abspath(image_path)
# Loads the image into memory
with io.open(file_name, 'rb') as image_file:
content = image_file.read()
image = types.Image(content=content)
return image
def get_object_info(image,suppress=True):
client = vision.ImageAnnotatorClient()
# Performs object detection on the image file
response = client.object_localization(image=image,max_results=20)
objects = response.localized_object_annotations
if suppress!=True:
print('Number of objects found: {}'.format(len(objects)))
for object_ in objects:
print('\n{} (confidence: {})'.format(object_.name, object_.score))
return objects
def get_text_info(image,suppress=True):
client = vision.ImageAnnotatorClient()
response = client.text_detection(image=image)
texts = response.text_annotations
if suppress!=True:
print('Texts:')
for text in texts:
print('\n"{}"'.format(text.description))
vertices = (['({},{})'.format(vertex.x, vertex.y)
for vertex in text.bounding_poly.vertices])
print('bounds: {}'.format(','.join(vertices)))
return texts
def get_label_info(image,suppress=True):
client = vision.ImageAnnotatorClient()
response = client.label_detection(image=image)
labels = response.label_annotations
if suppress!=True:
print('Labels:')
for label in labels:
print(label.description)
return labels
def check_overlap(y_max1,y_min2):
if (y_max1<=y_min2):
return False
else:
return True
def bounders(height,width,objects):
bounding_box_list=[]
for object_ in objects:
x_max,y_max,x_min,y_min=-1,-1,-2,-2
for vertex in object_.bounding_poly.normalized_vertices:
if x_max==-1:
x_max=vertex.x
else:
if vertex.x>x_max:
x_min=x_max
x_max=vertex.x
else:
x_min=vertex.x
if y_max==-1:
y_max=vertex.y
else:
if vertex.y<y_max:
y_min=y_max
y_max=vertex.y
else:
y_min=vertex.y
entry=(int(x_min*width),int(y_max*height),int(x_max*width),int(y_min*height))
bounding_box_list+=[entry]
bounding_box_list= sorted(bounding_box_list, key=lambda tup: tup[1])
return bounding_box_list
def true_vals(bounding_box_list,height):
shelf_indexes=[]
i=0
shift=1
last_one=False
while i<len(bounding_box_list)-1:
if (i+shift==len(bounding_box_list)-1):
last_one=True
try:
if check_overlap(bounding_box_list[i][3],bounding_box_list[i+shift][1])==False and last_one!=True:
shelf_indexes+=[(bounding_box_list[i][1],bounding_box_list[i+shift-1][3])]
i+=shift
shift=1
else:
if last_one==True:
shelf_indexes+=[(bounding_box_list[i][1],bounding_box_list[i+shift-1][3])]
shift+=1
except:
break
true_indexes=[]
min_val=shelf_indexes[0][0]
min_val_max=shelf_indexes[0][1]
for i in range(0,len(shelf_indexes),1):
if i==len(shelf_indexes)-1:
if check_overlap(min_val_max,shelf_indexes[i][0])==True:
true_indexes+=[(min_val,shelf_indexes[i][1])]
else:
true_indexes+=[(shelf_indexes[i][0],shelf_indexes[i][1])]
else:
if check_overlap(min_val_max,shelf_indexes[i+1][0])==False:
true_indexes+=[(min_val,shelf_indexes[i+1][0])]
min_val=shelf_indexes[i+1][0]
min_val_max=shelf_indexes[i+1][1]
true_indexes=[(22,true_indexes[0][0])]+true_indexes+[(true_indexes[-1][1],height-22)]
#if shelf_indexes[i][1]<shelf_indexes[i+1][0]:
# true_indexes+=[(shelf_indexes[i][0],shelf_indexes[i+1][0])]
return true_indexes
def draw_rectangles(image_path,objects):
#output_directory='one_level_down/'
start=time.time()
img=cv2.imread(image_path)
height, width, shape = img.shape
bounding_box_list=bounders(height,width,objects)
true_indexes=true_vals(bounding_box_list,height)
print(true_indexes, 'TRUE VALS')
counter=0
for i in bounding_box_list:
img = cv2.rectangle(img,(i[0],i[1]),(i[2],i[3]),(0,255,0),8)
cv2.putText(img, str(counter), (i[0], i[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0,255,0), 3)
counter+=1
img_true=cv2.imread(image_path)
all_image_paths=[]
for i in range(0,len(true_indexes),1):
img = cv2.rectangle(img,(25,true_indexes[i][0]),(width-25,true_indexes[i][1]),(255,255,0),3)
path = 'output_'+str(i)+'.png'
all_image_paths+=[path]
cv2.imwrite(path,img_true[true_indexes[i][0]-15:true_indexes[i][1],0:width])
cv2.imwrite('true_output.png',img)
end=time.time()
print(end-start,'TIME ELAPSED')
return all_image_paths
def redraw(all_image_paths):
#output_directory='two_levels_down/'
all_bounding_box_info=[]
all_new_image_paths=[]
for image_path in all_image_paths:
image=get_image_info(image_path)
objects=get_object_info(image)
img=cv2.imread(image_path)
height, width, shape = img.shape
bounding_box_list=bounders(height,width,objects)
for i in bounding_box_list:
img = cv2.rectangle(img,(i[0],i[1]),(i[2],i[3]),(0,255,0),5)
new_image_path=image_path[:len(image_path)-4]+'_changes.png'
cv2.imwrite(new_image_path,img)
all_new_image_paths+=[new_image_path]
all_bounding_box_info+=[bounding_box_list]
return all_new_image_paths, all_bounding_box_info
def return_all_object_label_info(all_new_image_paths):
full_list=[]
redundant_stuff=['Food','Fruit','Plant', 'Vegetable', 'Plastic', 'Glass Bottle', 'Dairy', 'Water', 'Drink','Dessert', 'Cup', 'Toy']
for new_image_path in all_new_image_paths:
temp_entry=[]
image=get_image_info(new_image_path)
labels=get_label_info(image,suppress=True)
objects=get_object_info(image,suppress=True)
for label in labels:
if label.description not in redundant_stuff:
temp_entry+=[label.description]
for object_ in objects:
if object_.name not in redundant_stuff:
temp_entry+=[object_.name]
single_entry=[temp_entry]
text_entry=[]
if 'Packaged goods' in temp_entry:
texts=get_text_info(image,suppress=True)
flip=False
for text in texts:
if flip==True:
text_entry+=[text.description]
flip=True
single_entry+=[text_entry]
full_list+=[single_entry]
return full_list
def create_specific_images(all_new_image_paths,all_bounding_box_info):
output_directory='output_files'
full_image_paths=[]
increment=20
for i in range(0,len(all_new_image_paths),1):
for j in range(0,len(all_bounding_box_info[i]),1):
new_image=cv2.imread(all_new_image_paths[i])
new_writing_path=output_directory+'/'+all_new_image_paths[i][:len(all_new_image_paths[i])-4]+'_'+str(j)+'.png'
temp_entry=all_bounding_box_info[i][j]
try:
cv2.imwrite(new_writing_path,new_image[temp_entry[1]-increment:temp_entry[3]+increment,temp_entry[0]-increment:temp_entry[2]+increment])
full_image_paths+=[new_writing_path]
except:
continue
return full_image_paths
def main_pipeline(image_path):
client = vision.ImageAnnotatorClient()
start=time.time()
# Instantiates a client
image=get_image_info(image_path)
objects=get_object_info(image)
end=time.time()
print(end-start, 'TIME ELAPSED FOR OBJECT DETECTION')
all_image_paths=draw_rectangles(image_path,objects)
#print(all_image_paths)
all_new_image_paths,all_bounding_box_info=redraw(all_image_paths)
#print(all_new_image_paths)
full_image_paths=create_specific_images(all_new_image_paths,all_bounding_box_info)
#print(full_image_paths)
full_list=return_all_object_label_info(full_image_paths)
end=time.time()
print(end-start,'TIME ELAPSED FOR COMPLETION')
return full_list
image_path='images/20200823_093157-min.jpg'
full_list=main_pipeline(image_path)