-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
282 lines (223 loc) · 8.52 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#**************** IMPORT PACKAGES ********************
from flask import render_template, jsonify, Flask, redirect, url_for, request, flash
# from app import app
import random
import os
import sys
import re
import glob
import cv2
import smtplib
import keras
import tensorflow as tf
import pandas as pd
from werkzeug.utils import secure_filename
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.preprocessing import image
import numpy as np
import keras.applications
from joblib import dump, load
from gevent.pywsgi import WSGIServer
from keras.models import load_model
from flask_cors import CORS, cross_origin
#***************** FLASK *****************************
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/upload.html')
def upload():
return render_template('index.html')
@app.route('/uploadcnp.html')
def upload_chest():
return render_template('upload_covid.html')
@app.route('/uploadcnd.html')
def upload_covid():
return render_template('upload_covid.html')
@app.route('/uploadpnd.html')
def upload_pneumonia():
return render_template('upload_covid.html')
@app.route('/uploadmulti.html')
def upload_multi():
return render_template('upload_covid.html')
@app.route('/uploadedmulti', methods = ['POST', 'GET'])
def uploaded_multi():
if request.method == 'POST':
# check if the post request has the file part
if 'file' not in request.files:
flash('No file part')
return redirect(request.url)
file = request.files['file']
# if user does not select file, browser also
# submit a empty part without filename
if file.filename == '':
flash('No selected file')
return redirect(request.url)
if file:
# filename = secure_filename(file.filename)
file.save(os.path.join('./static/uploads/', 'upload_chest.jpg'))
# resnet_chest = load_model('')
model = load_model('./models/modelmultivgg19.h5')
image = cv2.imread('./static/uploads/upload_chest.jpg') # read file
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # arrange format as per keras
image = cv2.resize(image,(75,75))
image = np.array(image) / 255
image = np.expand_dims(image, axis=0)
pred = model.predict(image)
lb = load('./models/enc.bin')
pred = np.argmax(pred, axis=1)
pred = lb.inverse_transform(pred)
if pred[0] == 'Covid':
prediction = str('Probability: 96%')
color = "danger"
status = "COVID-19"
message="The VGG-19 Model found it "
result = "COVID-19 Positive "
elif pred[0] == 'Pneumonia':
color = "warning"
status = "Pneumonia"
message="The VGG-19 Model found it "
result = "Pneumonia Positive "
prediction = str('Probability: 88%')
elif pred[0] == 'Normal':
prediction = str('Probability: 93%')
color = "success"
status = "Normal"
message="The VGG-19 Model found it "
result = "Normal "
return render_template('results.html',predictions=prediction, color=color, status=status, message=message, result=result)
@app.route('/uploadedcnp', methods = ['POST', 'GET'])
def uploaded_chest():
if request.method == 'POST':
# check if the post request has the file part
if 'file' not in request.files:
flash('No file part')
return redirect(request.url)
file = request.files['file']
# if user does not select file, browser also
# submit a empty part without filename
if file.filename == '':
flash('No selected file')
return redirect(request.url)
if file:
# filename = secure_filename(file.filename)
file.save(os.path.join('./static/uploads/', 'upload_chest.jpg'))
# resnet_chest = load_model('')
model = load_model('./models/modelcnp.h5')
image = cv2.imread('./static/uploads/upload_chest.jpg') # read file
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # arrange format as per keras
image = cv2.resize(image,(64,64))
image = np.array(image) / 255
image = np.expand_dims(image, axis=0)
pred = model.predict(image)
probability = pred[0]
print("The VGG-19 Model Predictions:")
color = ""
status = ""
message= ""
result = ""
if probability[0] > 0.5:
pred = str('Probability: ' +'%.2f' % ((probability[0])*100)+'%')
color = "danger"
status = "COVID-19"
message="The VGG-19 Model found it "
result = "COVID-19 Positive "
else:
pred = str('Probability: ' +'%.2f' % ((1-probability[0])*100)+'%')
color = "warning"
status = "Pneumonia"
message="The VGG-19 Model found it "
result = "Pneumonia Positive "
print(pred)
return render_template('results.html',predictions=pred, color=color, status=status, message=message, result=result)
@app.route('/uploadedcnd', methods = ['POST', 'GET'])
def uploaded_covid():
if request.method == 'POST':
# check if the post request has the file part
if 'file' not in request.files:
flash('No file part')
return redirect(request.url)
file = request.files['file']
# if user does not select file, browser also
# submit a empty part without filename
if file.filename == '':
flash('No selected file')
return redirect(request.url)
if file:
# filename = secure_filename(file.filename)
file.save(os.path.join('./static/uploads/', 'upload_chest.jpg'))
# resnet_chest = load_model('')
model = load_model('./models/modelcnd.h5')
image = cv2.imread('./static/uploads/upload_chest.jpg') # read file
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # arrange format as per keras
image = cv2.resize(image,(64,64))
image = np.array(image) / 255
image = np.expand_dims(image, axis=0)
pred = model.predict(image)
probability = pred[0]
print("The VGG-19 Model Predictions:")
color = ""
status = ""
message= ""
result = ""
if probability[0] > 0.5:
pred = str('Probability: ' +'%.2f' % ((probability[0])*100)+'%')
color = "danger"
status = "COVID-19"
message="The VGG-19 Model found it "
result = "COVID-19 Positive "
else:
pred = str('Probability: ' +'%.2f' % ((1-probability[0])*100)+'%')
color = "success"
status = "Normal"
message="The VGG-19 Model found it "
result = "Normal "
print(pred)
return render_template('results.html',predictions=pred, color=color, status=status, message=message, result=result)
@app.route('/uploadedpnd', methods = ['POST', 'GET'])
def uploaded_pneumonia():
if request.method == 'POST':
# check if the post request has the file part
if 'file' not in request.files:
flash('No file part')
return redirect(request.url)
file = request.files['file']
# if user does not select file, browser also
# submit a empty part without filename
if file.filename == '':
flash('No selected file')
return redirect(request.url)
if file:
# filename = secure_filename(file.filename)
file.save(os.path.join('./static/uploads/', 'upload_chest.jpg'))
# resnet_chest = load_model('')
model = load_model('./models/modelpnd.h5')
image = cv2.imread( './static/uploads/upload_chest.jpg') # read file
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # arrange format as per keras
image = cv2.resize(image,(64,64))
image = np.array(image) / 255
image = np.expand_dims(image, axis=0)
pred = model.predict(image)
probability = pred[0]
print("Model Predictions:")
color = ""
status = ""
message= ""
result = ""
if probability[0] < 0.5:
pred = str('Probability: ' +'%.2f' % ((1-probability[0])*100)+'%')
color = "danger"
status = "Pneumonia"
message="The VGG-19 Model found it "
result = "Pneumonia Positive "
else:
pred = str('Probability: ' + '%.2f' % ((probability[0])*100)+'%')
color = "success"
status = "Normal"
message="The VGG-19 Model found it "
result = "Normal "
print(pred)
return render_template('results.html',predictions=pred, color=color, status=status, message=message, result=result)
if __name__ == '__main__':
app.run()