-
Notifications
You must be signed in to change notification settings - Fork 7
/
interpolation.jl
218 lines (200 loc) · 6.8 KB
/
interpolation.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
using LinearAlgebra
#Create an interpolation path between x1 and x2, unit vectors
#by normalizing the linear interpolation of parameter t[i].
function interpolate_vec(x1,x2,t)
@assert(size(t)[1]>2)
v_interp = zeros(ComplexF64,size(x1)[1],size(t)[1])
for i in 1:size(t)[1]
v_interp[:,i] = (1-t[i])*x1 + t[i]*x2
n = norm(v_interp[:,i])
@assert(n > 1e-2)
v_interp[:,i] = v_interp[:,i]/n
end
return v_interp
end
#Compute the parallel transport of the matrix path matrixPath
#along the homotopy of the frame framePath that starts with
#the columns columns[] of matrixPath.
function parallelTransport(framePath, columns, matrixPath, backwards = false)
@assert(size(matrixPath)[1] == size(framePath)[1])
nc = size(columns)[1]
ntot = size(matrixPath)[1]
n = size(matrixPath)[end]
P = zeros(ComplexF64,ntot,ntot,n,n)
U = zeros(ComplexF64,ntot,ntot,n,n)
@assert(size(framePath[1,1,:,:]*framePath[1,1,:,:]') == (n,n))
for i1 = 1:ntot, i2 = 1:ntot, j=1:n
# Compute parallel transport starting from i2=1 to i2=ntot
if !backwards
P[i1,i2,:,:] = I - framePath[i1,i2,:,:]*framePath[i1,i2,:,:]'
# Propagate column j of matrixPath along framePath
if j in columns
ind = find(column->column == j, columns)
if(abs(norm(framePath[i1,i2,:,ind])-1)<1e-2)
U[i1,i2,:,j] = framePath[i1,i2,:,ind]
else
if i2>1
U[i1,i2,:,j] = P[i1,i2,:,:] * U[i1,i2-1,:,j]
else
U[i1,i2,:,j] = P[i1,i2,:,:] * matrixPath[i1,:,j]
end
end
else
if i2>1
U[i1,i2,:,j] = P[i1,i2,:,:] * U[i1,i2-1,:,j]
else
U[i1,i2,:,j] = P[i1,i2,:,:] * matrixPath[i1,:,j]
end
end
U[i1,i2,:,j] /= norm(U[i1,i2,:,j])
# Compute parallel transport from i2=ntot to i2=1
else
P[i1,ntot-i2+1,:,:] = I - framePath[i1,ntot-i2+1,:,:]*framePath[i1,ntot-i2+1,:,:]'
# Propagate column j of matrixPath along framePath
if j in columns
ind = (findall(column->column == j, columns))[1]
if(abs(norm(framePath[i1,ntot-i2+1,:,ind])-1)<1e-2)
U[i1,ntot-i2+1,:,j] = framePath[i1,ntot-i2+1,:,ind]
else
if i2>1
U[i1,ntot-i2+1,:,j] = P[i1,ntot-i2+1,:,:] * U[i1,ntot-i2+2,:,j]
else
U[i1,ntot-i2+1,:,j] = P[i1,ntot-i2+1,:,:] * matrixPath[i1,:,j]
end
end
else
if i2>1
U[i1,ntot-i2+1,:,j] = P[i1,ntot-i2+1,:,:] * U[i1,ntot-i2+2,:,j]
else
U[i1,ntot-i2+1,:,j] = P[i1,ntot-i2+1,:,:] * matrixPath[i1,:,j]
end
end
U[i1,ntot-i2+1,:,j] /= norm(U[i1,ntot-i2+1,:,j])
end
notColumns = [!(j in columns) for j=1:n]
# Normalize the remaining columns
if(!all(.!notColumns))
U[i1,i2,:,notColumns] = normalize_matrix(U[i1,i2,:,notColumns])
end
end
return U
end
#Choose the column and the target point to contract the
#vector path of the columns of matrixPath
function choosePole(columns, matrixPath, t, previousPoles)
#Number of iterations to find a pole far enough from the path
nbIt = 100
if isempty(columns)
columns = [1]
else
columns = [columns; (length(columns)+1)]
end
col = columns[end]
@assert(col <= size(matrixPath)[2])
n = size(matrixPath)[2]
vecPath = matrixPath[:,col,:]
diam = maximum([norm(vecPath[i,:]-vecPath[j,:]) for i=1:size(t)[1], j=1:size(t)[1]])
pole = deepcopy(vecPath[1,:]*0.0)
pole[col] = 1.0
m = 1
maxDist = 0.
maxPole = pole
# If the diameter of the path on the sphere is too big,
# try a list of cardinal points as poles.
if(diam>1.5)
while(m<nbIt)
dist = minimum([norm(pole+vecPath[i,:]) for i=1:size(t)[1]])
if dist > maxDist
maxPole = pole
maxDist = dist
end
if(m<=n)
pole = Matrix((1.0+0.0im)I,n,n)[m,:]
elseif(m>n && m<=2n)
pole = -Matrix((1.0+0.0im)I,n,n)[m-n,:]
else
pole = [randn() + randn()*im for i=1:size(pole)[1]]
end
Proj = Matrix((1.0+0.0im)I,length(pole),length(pole)) - previousPoles*previousPoles'
pole = Proj*pole
pole = pole / norm(pole)
m += 1
end
pole = maxPole
# If the diameter of the path is small, the barycentre of the path is a good pole.
else
println("Pole chosen by barycentre of path")
pole = sum(vecPath[i,:] for i=1:size(t)[1])
@assert(norm(pole)>1e-1)
pole = pole/norm(pole)
end
#println("Pole chosen = $pole\nDistance to nearest point = $maxDist")
return columns, pole
end
#Contract the matrix path matrixPath to a single matrix point
#in the space of unitaries using parallel transport
function matrixTransport(matrixPath,t)
if (size(t)[1] == 1)
return reshape(matrixPath,(size(matrixPath)[1],1,size(matrixPath)[2],size(matrixPath)[3]))
end
@assert(maximum([norm(matrixPath[i,:,:]*matrixPath[i,:,:]'-I) for i=1:size(t)[1]]) <1e-5)
n = size(matrixPath)[end]
columns = zeros(Int64,0)
previousPoles = zeros(ComplexF64,n)
vecInterp = zeros(ComplexF64,size(t)[1],size(t)[1],n,n)
U = zeros(ComplexF64,size(t)[1],size(t)[1],n,n)
for col=1:n
### ensure pole'*U[i,end,:,col+1] != -1
columns, pole = choosePole(columns,matrixPath,t,previousPoles)
println("columns, pole = $columns, $pole")
#vecPath = matrixPath[:,:,col]
U = parallelTransport(vecInterp,columns,matrixPath,true)
# Compute the coefficients of the transported path on the basis of the poles,
# and contract it to a point.
if col<n
c = zeros(ComplexF64,size(t)[1],size(t)[1],n-col+1)
notColumns = [!(j in columns[1:end-1]) for j=1:n]
for i=1:size(t)[1]
Us = zeros(ComplexF64,size(t)[1],n-col+1,n)
for k=1:size(c)[end]
Us[i,k,:] = U[i,end,:,col+k-1]
c[i,1,k] = Us[i,k,:]'*pole
end
for j=1:size(t)[1]
e1 = Matrix((1.0+0.0im)I,n-col+1,n-col+1)[1,:]
c[i,j,:] = (1-t[j])*c[i,1,:] + t[j]*e1
c[i,j,:] = c[i,j,:]/norm(c[i,j,:])
end
for j=1:size(t)[1]
vecInterp[i,j,:,col] = sum(U[i,j,:,col+k-1]*c[i,j,k] for k=1:size(c)[end])
vecInterp[i,j,:,col]/=norm(vecInterp[i,j,:,col])
end
end
# Contract the last column by finding a continuous phase.
else
logPhase = zeros(Float64,size(t)[1])
for i=1:size(t)[1]
#println("U[$i,1,:,$(col-1)] = $(U[i,1,:,col-1])")
#println("U[$i,1,:,$col] = $(U[i,1,:,col])")
logPhase[i] = imag(log(pole'*U[i,1,:,col]))
if i>1
kmin = argmin([abs(logPhase[i]+2*pi*k-logPhase[i-1]) for k in -1:1])
logPhase[i] += (kmin-2)*2*pi
end
end
for i=1:size(t)[1], j=1:size(t)[1]
U[i,j,:,col] = U[i,j,:,col]*exp(-im*(1-t[j])*logPhase[i])
end
end
end
# Bring the contraction point from Obs to I
Obs = normalize_matrix(U[1,1,:,:])
println("Obs = $Obs")
for i=1:size(t)[1]
for j=1:size(t)[1]
U[i,j,:,:] = powm(Obs',1-t[j])*U[i,j,:,:]
#U[i,j,:,:] = normalize_matrix(U[i,j,:,:])
end
end
return U
end