-
Notifications
You must be signed in to change notification settings - Fork 0
/
gauss-jordan.cc
72 lines (71 loc) · 1.59 KB
/
gauss-jordan.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/* LAB 5-a
* NUMERICAL METHODS
*
* SOLVING SYSTEM OF LINEAR EQUATIONS USING GAUSS JORDAN METHOD
*
* BY: ANISH BHUSAL
* 072BCT505
* IOE, Pulchowk Campus
*/
#include<iostream>
#include<iomanip>
using namespace std;
int main()
{
int n;
cout<<"Enter the number of unknown: ";
cin>>n;
float mat[n][n+1];
//INPUT for augmented matrix coefficent matrix:constant
for(int i=0;i<n;i++)
{
for(int j=0;j<n+1;j++)
{
cout<<"Enter the value of augment matrix element a "<<i+1<<j+1<<" ";
cin>>mat[i][j];
}
}
//Displaying entered augmented matrix
cout<<"---------The entered matrix is-----------"<<endl;
for(int i=0;i<n;i++)
{
for(int j=0;j<n+1;j++)
{
cout<<setw(15)<<mat[i][j];
}
cout<<endl;
}
float m,p;
for(int i=0;i<n;i++)
{
m=mat[i][i];
for(int j=0;j<n+1;j++)
{
if(i!=j)
{
p=mat[j][i];
for(int k=0;k<n+1;k++)
{
mat[j][k]-=(p/m)*mat[i][k];
}
}
}
}
cout<<"---------------The diagonal matrix is-------------------"<<endl;
for(int i=0;i<n;i++)
{
for(int j=0;j<n+1;j++)
{
cout<<setw(15)<<mat[i][j];
}
cout<<endl;
}
float x[n];
cout<<"The solutions are "<<endl;
for(int i=0;i<n;i++)
{
x[i]=mat[i][n]/mat[i][i];
cout<<x[i]<<endl;
}
return 0;
}