-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
190 lines (159 loc) · 5.87 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.distributions.normal import Normal
import torch.nn.functional as F
import numpy as np
import math
class Unit(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1):
super(Unit, self).__init__()
self.conv = nn.Conv2d(in_channels=in_channels, kernel_size=kernel_size,
out_channels=out_channels, stride=stride,
padding=1)
self.bn = nn.BatchNorm2d(num_features=out_channels)
self.relu = nn.ReLU()
def forward(self, input):
output = self.conv(input)
output = self.bn(output)
output = self.relu(output)
return output
class FirstNet(nn.Module):
def __init__(self, num_classes=10):
super(FirstNet, self).__init__()
self.unit1 = Unit(in_channels=3, out_channels=32, kernel_size=5)
self.unit2 = Unit(in_channels=32, out_channels=32, kernel_size=4)
# self.unit3 = Unit(in_channels=32, out_channels=32)
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.unit4 = Unit(in_channels=32, out_channels=64)
# self.unit5 = Unit(in_channels=64, out_channels=64)
# self.unit6 = Unit(in_channels=64, out_channels=64)
# self.unit7 = Unit(in_channels=64, out_channels=64)
self.avgpool = nn.AvgPool2d(kernel_size=6)
self.net = nn.Sequential(self.unit1, self.unit2,
self.pool1, self.unit4,
self.avgpool)
self.fc = nn.Linear(in_features=256, out_features=num_classes)
def forward(self, input):
output = self.net(input)
# print(output.shape)
output = output.view(-1, 256)
# print(output.shape)
output = self.fc(output)
return output
class SecondNet(nn.Module):
def __init__(self):
super(SecondNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# http://parneetk.github.io/blog/cnn-cifar10/
class PerformantNet1(nn.Module):
def __init__(self):
super(PerformantNet1, self).__init__()
self.conv1 = nn.Conv2d(3, 48, 3, padding = (2,2))
self.conv2 = nn.Conv2d(48, 48, 3, padding = (2,2))
self.pool1 = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(p=0.25)
self.conv3 = nn.Conv2d(48, 96, 3, padding = (2,2))
self.conv4 = nn.Conv2d(96, 96, 3, padding = (2,2))
self.conv5 = nn.Conv2d(96, 192, 3, padding = (2,2))
self.conv6 = nn.Conv2d(192, 192, 3, padding = (2,2))
self.linear1 = nn.Linear(9408, 512)
self.dropout2 = nn.Dropout(p=0.5)
self.linear2 = nn.Linear(512, 256)
self.linear3 = nn.Linear(256, 10)
def forward(self, x):
bs = x.shape[0]
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = self.pool1(x)
x = self.dropout1(x)
x = F.relu(self.conv5(x))
x = F.relu(self.conv6(x))
x = self.pool1(x)
x = self.dropout1(x)
x = x.view(bs,-1)
x = F.relu(self.linear1(x))
x = self.dropout2(x)
x = F.relu(self.linear2(x))
x = self.dropout2(x)
x = self.linear3(x)
return x
class AdvNet(nn.Module):
def __init__(self, input_dim, activation_function=F.relu):
super(AdvNet, self).__init__()
self.linear1 = nn.Linear(input_dim, 256)
self.linear2 = nn.Linear(256, 64)
self.linear3 = nn.Linear(64, 10)
self.activation_function = activation_function
def forward(self, x):
x = self.activation_function(self.linear1(x))
x = self.activation_function(self.linear2(x))
x = self.linear3(x)
return x
class VGG(nn.Module):
'''
VGG model
'''
def __init__(self, features):
super(VGG, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(512, 512),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(512, 512),
nn.ReLU(True),
nn.Linear(512, 10),
)
# Initialize weights
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
m.bias.data.zero_()
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
}
def vgg11():
"""VGG 11-layer model (configuration "A")"""
return VGG(make_layers(cfg['A']))
def vgg11_bn():
"""VGG 11-layer model (configuration "A") with batch normalization"""
return VGG(make_layers(cfg['A'], batch_norm=True))