-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
388 lines (279 loc) · 10.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""
Securing Federated Learning: Obfuscation and Encryption
Lev Grossman and Anirudh Suresh
lgrossman@college.harvard.edu, anirudh_suresh@college.harvard.edu
TODO: iid vs. non-iid data during training (split into class-specific)
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.distributions.normal import Normal
from torch.distributions.uniform import Uniform
import torch.nn.functional as F
import torchvision
import numpy as np
from agents import *
from models import *
from util import *
import copy
import time
import sys
n_workers = 10
n_epochs = 1000
batch_size = 128
mean0_std = 0 # 0 if no zero-mean epsilon
scale = 0
learning_rate = 0.001
encrypt = False
save_data_and_plots = False
load_model = False
save_model = False
noniid = False
transform = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# Import Datasets
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=True, transform=transform)
# Create Validation Split
valset = copy.deepcopy(trainset)
advset = copy.deepcopy(trainset)
trainset.data = trainset.data[0:48000]
trainset.targets = trainset.targets[0:48000]
valset.data = valset.data[48000:49000]
valset.targets = valset.targets[48000:49000]
advset.data = advset.data[49000:50000]
advset.targets = advset.targets[49000:50000]
# Create Train, Validation, and Test Loaders
if noniid:
def noniid_batch_trainset(trainset, c):
indices = (np.array(trainset.targets) == c)
trainset2 = copy.deepcopy(trainset)
trainset2.data = trainset2.data[indices]
trainset2.targets = [c for i in range(len(indices))]
return trainset2
trainsets = [noniid_batch_trainset(trainset,i) for i in set(trainset.targets)]
else:
trainsets = [trainset]
samplers = [torch.utils.data.RandomSampler(i, replacement=True) for i in trainsets]
trainloaders = [torch.utils.data.DataLoader(
trainsets[i], batch_size=batch_size, shuffle=False, sampler=samplers[i],
num_workers=0) for i in range(len(trainsets))]
valloader = torch.utils.data.DataLoader(
valset, batch_size=valset.data.shape[0], shuffle=False, num_workers=0)
# advloader = torch.utils.data.DataLoader(
# advset, batch_size=batch_size, shuffle=False, num_workers=0)
testloader = torch.utils.data.DataLoader(
testset, batch_size=batch_size, shuffle=False, num_workers=0)
def encrypted_rule(ups_list):
return [np.stack([x[i] for x in ups_list]).mean(0)
for i in range(len(ups_list[0]))]
def rule(ups_list): # ups_list is a list of list of tensors
return [torch.stack([x[i] for x in ups_list]).mean(0)
for i in range(len(ups_list[0]))]
# Setup Learning Model
model = PerformantNet1()
if load_model:
model.load_state_dict(torch.load("PerformantNet1_10epochs.pt"))
n_epochs = 0
# model = torchvision.models.vgg16_bn()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cpu_device = torch.device("cpu")
print(device)
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
loss = nn.CrossEntropyLoss()
# Setup Federated Learning Framework
central = Central(model, optimizer, encryption=encrypt)
worker_list = []
for i in range(n_workers):
worker_list.append(Worker(loss, key=central.get_key()))
if encrypt:
agg = Agg(encrypted_rule)
else:
agg = Agg(rule)
# Add DP noise
# noise_model = Normal(torch.zeros_like(paramval), mean0_std)
e_dist_w = []
for layer, paramval in central.model.named_parameters():
if scale > 0:
lower = -1.0 * torch.ones_like(paramval) * scale
upper = 1.0 * torch.ones_like(paramval) * scale
e_dist_w.append(Uniform(lower, upper))
else:
e_dist_w.append(Normal(torch.zeros_like(paramval), mean0_std))
epochs = []
accuracies = []
# Training Loop
for t in range(n_epochs):
first_time = time.time()
weight_ups = []
central.model.train()
dataiters = [iter(trainloader) for trainloader in trainloaders]
# Worker Loop
for i in range(n_workers):
k = np.random.randint(0, len(dataiters))
dataiter = dataiters[k]
batch_inp, batch_outp = dataiter.next()
batch_inp, batch_outp = batch_inp.to(device), batch_outp.to(device)
worker_list[i].model = central.model
ups = worker_list[i].fwd_bkwd(batch_inp, batch_outp)
if not encrypt:
for i in range(len(e_dist_w)):
ups[i] += e_dist_w[i].sample()
weight_ups.append(ups)
# Aggregate Worker Gradients
weight_ups_FIN = agg.rule(weight_ups)
# Update Central Model
central.update_model(weight_ups_FIN)
central.model.eval()
if t > 0 and t % 100 == 0:
print('Epoch: {}, Time to complete: {}'.format(t, time.time() - first_time))
if t % 250 == 0:
# print('Epoch: {}'.format(t))
accuracy = print_test_accuracy(model, testloader)
epochs.append(t)
accuracies.append(accuracy)
print('Done training')
# central.model.to(cpu_device)
if save_model:
torch.save(central.model.state_dict(), "PerformantNet1_10epochs.pt")
if save_data_and_plots:
if scale > 0:
savefile = "plots/UPN_scale={}_workers={}_batch_size={}_lr={}_epochs={}.png".format(
scale, n_workers, batch_size, learning_rate, n_epochs)
else:
savefile = "plots/PN_std={}_workers={}_batch_size={}_lr={}_epochs={}.png".format(
mean0_std, n_workers, batch_size, learning_rate, n_epochs)
save_data(epochs, accuracies, savefile)
plot_data(epochs, accuracies, xlabel="epoch", ylabel="accuracy",
savefile=savefile)
print('Done saving data')
# exit()
# Adversarial attack
just_last = True
paramslist = list(central.model.parameters())
if just_last:
tmp = paramslist[:6]
tmp.append(paramslist[-1])
paramslist = tmp
paramslist = [x.view(-1) for x in paramslist]
paramslist = torch.cat(paramslist)
print(paramslist.shape)
print(paramslist)
# exit()
learning_rate_adv = 0.01
n_epochs_adv = 50
adv_model = AdvNet(paramslist.shape[0])
adv_model.to(device)
central.init_adv(adv_model)
adv_optim = optim.Adam(central.adv.parameters(), lr=learning_rate_adv)
adv_dataset = []
for j in range(len(advset.data)):
optimizer.zero_grad()
x = torch.Tensor(advset.data[j]).transpose(-1, -2).transpose(-2, -3).unsqueeze(0)
y = torch.LongTensor([advset.targets[j]])
x, y = x.to(device), y.to(device)
# x_cuda = x.to(device)
x = central.model(x)
# x = x.to(cpu_device)
lossval = loss(x, y)
lossval.backward()
weightgrads = []
for layer, paramval in central.model.named_parameters():
weightgrads.append(paramval.grad.flatten())
if just_last:
# weightgrads = weightgrads[-1]
tmp = weightgrads[:6]
tmp.append(weightgrads[-1])
weightgrads = torch.cat(tmp)
else:
weightgrads = torch.cat(weightgrads)
# print(weightgrads)
adv_dataset.append([weightgrads, y.to(cpu_device)])
if j % 100 == 0:
torch.cuda.empty_cache()
total, used = check_mem()
total, used = int(total), int(used)
# print(total), print(used)
# print('emptied')
optimizer.zero_grad()
torch.cuda.empty_cache()
total, used = check_mem()
total, used = int(total), int(used)
print(total), print(used)
adv_x = torch.stack([x[0] for x in adv_dataset])
adv_y = torch.stack([x[1] for x in adv_dataset])
adv_dataset = torch.utils.data.TensorDataset(adv_x, adv_y)
advloader = torch.utils.data.DataLoader(
adv_dataset, batch_size=batch_size, shuffle=True, #sampler=sampler,
num_workers=0)
# Spliced this block
test_adv_dataset = []
for j in range(len(testset.data)):
optimizer.zero_grad()
x = torch.Tensor(testset.data[j]).transpose(-1, -2).transpose(-2, -3).unsqueeze(0)
y = torch.LongTensor([testset.targets[j]])
# x = x.to(device)
# x = central.model(x)
# x = x.to(cpu_device)
x, y = x.to(device), y.to(device)
lossval = loss(central.model(x), y)
lossval.backward()
weightgrads = []
for layer, paramval in central.model.named_parameters():
weightgrads.append(paramval.grad.flatten())
if just_last:
# weightgrads = weightgrads[-1]
tmp = weightgrads[:6]
tmp.append(weightgrads[-1])
weightgrads = torch.cat(tmp)
else:
weightgrads = torch.cat(weightgrads)
# noise = Normal(torch.zeros_like(weightgrads), mean0_std).sample()
if scale > 0:
lower = -1.0 * torch.ones_like(weightgrads) * scale
upper = 1.0 * torch.ones_like(weightgrads) * scale
noise = Uniform(lower, upper).sample()
else:
noise = Normal(torch.zeros_like(weightgrads), mean0_std).sample()
test_adv_dataset.append([weightgrads + noise, y])
if j % 100 == 0:
torch.cuda.empty_cache()
total, used = check_mem()
total, used = int(total), int(used)
# print(total), print(used)
# print('emptied')
optimizer.zero_grad()
test_adv_x = torch.stack([x[0] for x in test_adv_dataset])
test_adv_y = torch.stack([x[1] for x in test_adv_dataset])
# test_adv_x, test_adv_y = test_adv_x.to(device), test_adv_y.to(device)
# End splice
for t in range(n_epochs_adv):
central.adv.eval()
pred_labels = torch.argmax(central.adv(test_adv_x),1)
total_correct = (pred_labels == test_adv_y.squeeze()).sum()
print('Sum: {}'.format(total_correct))
print('Length: {}'.format(len(pred_labels)))
print(float(total_correct)/float(len(pred_labels)))
print('Adv Epoch: {}'.format(t))
adv_optim.zero_grad()
central.adv.train()
for i_batch, sample_batched in enumerate(advloader):
batch_inp, batch_outp = sample_batched
batch_inp, batch_outp = batch_inp.to(device), batch_outp.to(device)
preds = central.adv(batch_inp)
lossval = loss(preds, batch_outp.squeeze())
lossval.backward()
adv_optim.step()
adv_optim.zero_grad()
central.adv.eval()
pred_labels = torch.argmax(central.adv(test_adv_x),1)
total_correct = (pred_labels == test_adv_y.squeeze()).sum()
print('Sum: {}'.format(total_correct))
print('Length: {}'.format(len(pred_labels)))
print(float(total_correct)/float(len(pred_labels)))
###