-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoracle_of_oracle.py
87 lines (73 loc) · 3.66 KB
/
oracle_of_oracle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import DeepLake
from langchain.chat_models import ChatOpenAI
from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain
import custom_prompt
from constants import *
def pythia_chatbot(
lake_name,
chain_type,
model_type,
retriever_distance_metric,
retriever_fetch_k,
retriever_mmr,
retriever_k,
supply_conversation_context
):
if not lake_name:
raise Exception("Must have non-null lake name")
embeddings = OpenAIEmbeddings(disallowed_special=())
db = DeepLake(dataset_path=f"hub://{username_activeloop}/{lake_name}", read_only=True, embedding_function=embeddings)
retriever = db.as_retriever()
retriever.search_kwargs['distance_metric'] = retriever_distance_metric
retriever.search_kwargs['fetch_k'] = retriever_fetch_k
retriever.search_kwargs['maximal_marginal_relevance'] = retriever_mmr
retriever.search_kwargs['k'] = retriever_k
# import custom prompt
qa_prompt = custom_prompt.CHAT_PROMPT
if chain_type=="stuff" or chain_type=="map_rerank":
prompt_arg_name = "prompt"
elif chain_type=="map_reduce":
prompt_arg_name = "combine_prompt"
elif chain_type=="refine":
prompt_arg_name = "refine_prompt"
else:
raise Exception("Invalid chain_type argument")
# import chatbot
model = ChatOpenAI(model_name=model_type) # switch to 'gpt-4'
qa = ConversationalRetrievalChain.from_llm(model,chain_type=chain_type,retriever=retriever,combine_docs_chain_kwargs=dict([[prompt_arg_name, qa_prompt]]))
chat_history = []
while True:
question = input("Ask a question: ")
result = qa({"question": question, "chat_history": chat_history})
if supply_conversation_context:
chat_history.append((question, result['answer']))
print(f"-> **Question**: {question} \n")
print(f"**Answer**: {result['answer']} \n")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Run conversational retrieval chatbot based on indexed files in DeepLake VectorStore.')
parser.add_argument("--lake_name", "-ln", type=str, help="Name of the lake you wish to draw from")
parser.add_argument("--chain_type", "-ct", type=str, help="Name of the chain type to be used for the QA in the chatbot")
parser.add_argument("--model_type", "-mt", type=str, help="Name of the LLM class to be used for the chatbot")
parser.add_argument("--retriever_distance_metric", "-dm", type=str, help="Distance metric for retriever similarity function")
parser.add_argument("--retriever_fetch_k", "-fk", type=int, help="Number of documents to fetch to pass to max_marginal_relevance algorithm")
parser.add_argument("--retriever_k", "-k", type=int, help="Number of documents to return")
parser.add_argument("--omit_conversation_context", "-occ", dest="supply_conversation_context", action="store_false", help="Flag for whether to omit feeding ongoing conversation as context into the QA chain")
parser.set_defaults(model_type="gpt-3.5-turbo")
parser.set_defaults(chain_type="stuff")
parser.set_defaults(retriever_distance_metric="cos")
parser.set_defaults(retriever_fetch_k=100)
parser.set_defaults(retriever_k=10)
parser.set_defaults(supply_conversation_context=True)
args = parser.parse_args()
pythia_chatbot(
args.lake_name,
args.chain_type,
args.model_type,
args.retriever_distance_metric,
args.retriever_fetch_k,
True,
args.retriever_k,
args.supply_conversation_context
)