forked from tirthajyoti/Design-of-experiment-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyDOE_corrected.py
344 lines (274 loc) · 9.6 KB
/
pyDOE_corrected.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""
This code was originally published by the following individuals for use with
Scilab:
Copyright (C) 2012 - 2013 - Michael Baudin
Copyright (C) 2012 - Maria Christopoulou
Copyright (C) 2010 - 2011 - INRIA - Michael Baudin
Copyright (C) 2009 - Yann Collette
Copyright (C) 2009 - CEA - Jean-Marc Martinez
website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros
Much thanks goes to these individuals. It has been converted to Python by
Abraham Lee.
"""
import re
import numpy as np
#__all__ = ['np', 'fullfact_corrected', 'ff2n', 'fracfact']
def fullfact_corrected(levels):
"""
Create a general full-factorial design
Parameters
----------
levels : array-like
An array of integers that indicate the number of levels of each input
design factor.
Returns
-------
mat : 2d-array
The design matrix with coded levels 0 to k-1 for a k-level factor
Example
-------
::
>>> fullfact([2, 4, 3])
array([[ 0., 0., 0.],
[ 1., 0., 0.],
[ 0., 1., 0.],
[ 1., 1., 0.],
[ 0., 2., 0.],
[ 1., 2., 0.],
[ 0., 3., 0.],
[ 1., 3., 0.],
[ 0., 0., 1.],
[ 1., 0., 1.],
[ 0., 1., 1.],
[ 1., 1., 1.],
[ 0., 2., 1.],
[ 1., 2., 1.],
[ 0., 3., 1.],
[ 1., 3., 1.],
[ 0., 0., 2.],
[ 1., 0., 2.],
[ 0., 1., 2.],
[ 1., 1., 2.],
[ 0., 2., 2.],
[ 1., 2., 2.],
[ 0., 3., 2.],
[ 1., 3., 2.]])
"""
n = len(levels) # number of factors
nb_lines = np.prod(levels) # number of trial conditions
H = np.zeros((nb_lines, n))
level_repeat = 1
range_repeat = np.prod(levels)
for i in range(n):
range_repeat //= levels[i]
lvl = []
for j in range(levels[i]):
lvl += [j]*level_repeat
rng = lvl*range_repeat
level_repeat *= levels[i]
H[:, i] = rng
return H
################################################################################
def ff2n(n):
"""
Create a 2-Level full-factorial design
Parameters
----------
n : int
The number of factors in the design.
Returns
-------
mat : 2d-array
The design matrix with coded levels -1 and 1
Example
-------
::
>>> ff2n(3)
array([[-1., -1., -1.],
[ 1., -1., -1.],
[-1., 1., -1.],
[ 1., 1., -1.],
[-1., -1., 1.],
[ 1., -1., 1.],
[-1., 1., 1.],
[ 1., 1., 1.]])
"""
return 2*fullfact_corrected([2]*n) - 1
################################################################################
def fracfact(gen):
"""
Create a 2-level fractional-factorial design with a generator string.
Parameters
----------
gen : str
A string, consisting of lowercase, uppercase letters or operators "-"
and "+", indicating the factors of the experiment
Returns
-------
H : 2d-array
A m-by-n matrix, the fractional factorial design. m is 2^k, where k
is the number of letters in ``gen``, and n is the total number of
entries in ``gen``.
Notes
-----
In ``gen`` we define the main factors of the experiment and the factors
whose levels are the products of the main factors. For example, if
gen = "a b ab"
then "a" and "b" are the main factors, while the 3rd factor is the product
of the first two. If we input uppercase letters in ``gen``, we get the same
result. We can also use the operators "+" and "-" in ``gen``.
For example, if
gen = "a b -ab"
then the 3rd factor is the opposite of the product of "a" and "b".
The output matrix includes the two level full factorial design, built by
the main factors of ``gen``, and the products of the main factors. The
columns of ``H`` follow the sequence of ``gen``.
For example, if
gen = "a b ab c"
then columns H[:, 0], H[:, 1], and H[:, 3] include the two level full
factorial design and H[:, 2] includes the products of the main factors.
Examples
--------
::
>>> fracfact("a b ab")
array([[-1., -1., 1.],
[ 1., -1., -1.],
[-1., 1., -1.],
[ 1., 1., 1.]])
>>> fracfact("A B AB")
array([[-1., -1., 1.],
[ 1., -1., -1.],
[-1., 1., -1.],
[ 1., 1., 1.]])
>>> fracfact("a b -ab c +abc")
array([[-1., -1., -1., -1., -1.],
[ 1., -1., 1., -1., 1.],
[-1., 1., 1., -1., 1.],
[ 1., 1., -1., -1., -1.],
[-1., -1., -1., 1., 1.],
[ 1., -1., 1., 1., -1.],
[-1., 1., 1., 1., -1.],
[ 1., 1., -1., 1., 1.]])
"""
# Recognize letters and combinations
A = [item for item in re.split('\-?\s?\+?', gen) if item] # remove empty strings
C = [len(item) for item in A]
# Indices of single letters (main factors)
I = [i for i, item in enumerate(C) if item==1]
# Indices of letter combinations (we need them to fill out H2 properly).
J = [i for i, item in enumerate(C) if item!=1]
# Check if there are "-" or "+" operators in gen
U = [item for item in gen.split(' ') if item] # remove empty strings
# If R1 is either None or not, the result is not changed, since it is a
# multiplication of 1.
R1 = _grep(U, '+')
R2 = _grep(U, '-')
# Fill in design with two level factorial design
H1 = ff2n(len(I))
H = np.zeros((H1.shape[0], len(C)))
H[:, I] = H1
# Recognize combinations and fill in the rest of matrix H2 with the proper
# products
for k in J:
# For lowercase letters
xx = np.array([ord(c) for c in A[k]]) - 97
# For uppercase letters
if np.any(xx<0):
xx = np.array([ord(c) for c in A[k]]) - 65
H[:, k] = np.prod(H1[:, xx], axis=1)
# Update design if gen includes "-" operator
if R2:
H[:, R2] *= -1
# Return the fractional factorial design
return H
def _grep(haystack, needle):
try:
haystack[0]
except (TypeError, AttributeError):
return [0] if needle in haystack else []
else:
locs = []
for idx, item in enumerate(haystack):
if needle in item:
locs += [idx]
return locs
#__all__ = ['bbdesign_corrected']
def bbdesign_corrected(n, center=None):
"""
Create a Box-Behnken design
Parameters
----------
n : int
The number of factors in the design
Optional
--------
center : int
The number of center points to include (default = 1).
Returns
-------
mat : 2d-array
The design matrix
Example
-------
::
>>> bbdesign(3)
array([[-1., -1., 0.],
[ 1., -1., 0.],
[-1., 1., 0.],
[ 1., 1., 0.],
[-1., 0., -1.],
[ 1., 0., -1.],
[-1., 0., 1.],
[ 1., 0., 1.],
[ 0., -1., -1.],
[ 0., 1., -1.],
[ 0., -1., 1.],
[ 0., 1., 1.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
"""
assert n>=3, 'Number of variables must be at least 3'
# First, compute a factorial DOE with 2 parameters
H_fact = ff2n(2)
# Now we populate the real DOE with this DOE
# We made a factorial design on each pair of dimensions
# - So, we created a factorial design with two factors
# - Make two loops
Index = 0
nb_lines = int((0.5*n*(n-1))*H_fact.shape[0])
H = repeat_center(n, nb_lines)
for i in range(n - 1):
for j in range(i + 1, n):
Index = Index + 1
H[max([0, (Index - 1)*H_fact.shape[0]]):Index*H_fact.shape[0], i] = H_fact[:, 0]
H[max([0, (Index - 1)*H_fact.shape[0]]):Index*H_fact.shape[0], j] = H_fact[:, 1]
if center is None:
if n<=16:
points= [0, 0, 0, 3, 3, 6, 6, 6, 8, 9, 10, 12, 12, 13, 14, 15, 16]
center = points[n]
else:
center = n
H = np.c_[H.T, repeat_center(n, center).T].T
return H
def repeat_center(n, repeat):
"""
Create the center-point portion of a design matrix
Parameters
----------
n : int
The number of factors in the original design
repeat : int
The number of center points to repeat
Returns
-------
mat : 2d-array
The center-point portion of a design matrix (elements all zero).
Example
-------
::
>>> repeat_center(3, 2)
array([[ 0., 0., 0.],
[ 0., 0., 0.]])
"""
return np.zeros((repeat, n))