forked from tirthajyoti/Design-of-experiment-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdoe_box_behnken.py
91 lines (74 loc) · 2.55 KB
/
doe_box_behnken.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
This code was originally published by the following individuals for use with
Scilab:
Copyright (C) 2012 - 2013 - Michael Baudin
Copyright (C) 2012 - Maria Christopoulou
Copyright (C) 2010 - 2011 - INRIA - Michael Baudin
Copyright (C) 2009 - Yann Collette
Copyright (C) 2009 - CEA - Jean-Marc Martinez
website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros
Much thanks goes to these individuals. It has been converted to Python by
Abraham Lee.
"""
import numpy as np
from pyDOE.doe_factorial import ff2n
from pyDOE.doe_repeat_center import repeat_center
__all__ = ['bbdesign']
def bbdesign(n, center=None):
"""
Create a Box-Behnken design
Parameters
----------
n : int
The number of factors in the design
Optional
--------
center : int
The number of center points to include (default = 1).
Returns
-------
mat : 2d-array
The design matrix
Example
-------
::
>>> bbdesign(3)
array([[-1., -1., 0.],
[ 1., -1., 0.],
[-1., 1., 0.],
[ 1., 1., 0.],
[-1., 0., -1.],
[ 1., 0., -1.],
[-1., 0., 1.],
[ 1., 0., 1.],
[ 0., -1., -1.],
[ 0., 1., -1.],
[ 0., -1., 1.],
[ 0., 1., 1.],
[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
"""
assert n>=3, 'Number of variables must be at least 3'
# First, compute a factorial DOE with 2 parameters
H_fact = ff2n(2)
# Now we populate the real DOE with this DOE
# We made a factorial design on each pair of dimensions
# - So, we created a factorial design with two factors
# - Make two loops
Index = 0
nb_lines = int((0.5*n*(n-1))*H_fact.shape[0])
H = repeat_center(n, nb_lines)
for i in range(n - 1):
for j in range(i + 1, n):
Index = Index + 1
H[max([0, (Index - 1)*H_fact.shape[0]]):Index*H_fact.shape[0], i] = H_fact[:, 0]
H[max([0, (Index - 1)*H_fact.shape[0]]):Index*H_fact.shape[0], j] = H_fact[:, 1]
if center is None:
if n<=16:
points= [0, 0, 0, 3, 3, 6, 6, 6, 8, 9, 10, 12, 12, 13, 14, 15, 16]
center = points[n]
else:
center = n
H = np.c_[H.T, repeat_center(n, center).T].T
return H