-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuniswap_v2_performance_chart.py
118 lines (97 loc) · 5.61 KB
/
uniswap_v2_performance_chart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import pandas as pd
from bokeh.plotting import figure, show, output_file, save
from bokeh.models import Range1d, CrosshairTool, Span
from bokeh.layouts import gridplot
def cal_performance(df):
df['fee_eth_amount_cum'] = df['fee_eth_amount'].cumsum()
df['fee_usdc_amount_cum'] = df['fee_usdc_amount'].cumsum()
df['cum_fees'] = df['fee_eth_amount_cum'] * df['pool_price'] + df['fee_usdc_amount_cum']
df['lp_value'] = (df['lp_eth_amount'] + df['holder_eth_amount']) * df['pool_price'] + df['lp_usdc_amount'] + df['holder_usdc_amount']
df['lp_strategy_total_value'] = df['lp_value'] + df['cum_fees']
df['holder_value'] = df['holder_eth_amount'].values[0] * df['pool_price'] + df['holder_usdc_amount'].values[0]
df['IL'] = df['holder_value'] - df['lp_strategy_total_value']
return df
def plot(df_performance, df_signal, trade_info, base_token_symbol, quote_token_symbol):
base_token = base_token_symbol
quote_token = quote_token_symbol
all_datetime_range = np.array(df_performance["datetime"], dtype=np.datetime64)
xdr = Range1d(start=all_datetime_range[0], end=all_datetime_range[-1])
tools = ('undo', 'box_zoom', "wheel_zoom", "reset", "pan", 'crosshair', 'save')
# # P_Position_Change(fees/LP)
# P_PC = figure(title="Position Change", x_axis_type="datetime", x_axis_label="time",
# y_axis_label=f"{quote_token}(%)",
# height=250, sizing_mode="stretch_width", x_range=xdr, tools=tools)
#
# pc_set = {"time": [], "lp_pnl": [], "fees":[], "IL":[]}
# for i in trade_info.values():
# time = i["end_datetime"]
# lp_pnl = i["LP_PNL(%)"]
# fees = i["fees(%)"]
# IL = -i["IL(%)"]
# pc_set["time"].append(time)
# pc_set["lp_pnl"].append(lp_pnl)
# pc_set["fees"].append(fees)
# pc_set["IL"].append(IL)
#
# x_t = pc_set["time"]
# y_lp_pnl = pc_set["lp_pnl"]
# y_fees = pc_set["fees"]
# y_IL = pc_set["IL"]
#
# P_PC.circle(x_t, y_lp_pnl, legend_label="ΔLP", color="#F1948A", size=5)
# P_PC.circle(x_t, y_fees, legend_label="Fees", color="#73C6B6", size=5)
# P_PC.circle(x_t, y_IL, legend_label="IL", color="#A569BD", size=5)
#
# h_line = Span(location=0, dimension='width', line_color='#17202A', line_dash='dashed', line_width=1)
# P_PC.add_layout(h_line)
# P_PC.legend.click_policy = "hide"
# P_kline
y_price = df_performance["pool_price"]
P_kline = figure(title="Price", x_axis_label="time", x_axis_type="datetime",
y_axis_label=f"{base_token}/{quote_token}", height=300, sizing_mode="stretch_width",
tools=tools, x_range=xdr)
P_kline.line(all_datetime_range, y_price, legend_label="price", color="#515A5A", line_width=1.5)
# entry exit price
entry_exit_set = {"datetime": [], "price":[]}
df_add = df_signal.loc[df['signal'] == 'add']
df_remove = df_signal.loc[df['signal'] == 'remove']
P_kline.triangle(np.array(df_add['datetime'], dtype=np.datetime64), df_add['pool_price'], legend_label='add', color="#1ABC9C", size=5)
P_kline.inverted_triangle(np.array(df_remove['datetime'], dtype=np.datetime64), df_remove['pool_price'], legend_label='remove', color="#E74C3C", size=5)
# plot vol
y_vol = df_signal['vol']
P_vol = figure(title="Volatility", x_axis_label="time", x_axis_type="datetime",
y_axis_label=f"vol", height=250, sizing_mode="stretch_width",
tools=tools, x_range=xdr)
P_vol.line(all_datetime_range, y_vol, legend_label="volatility", color="#A569BD", line_width=1.5)
# P_acount
y_fees = df_performance["cum_fees"]
y_lp = 100 * (df_performance["lp_strategy_total_value"] / df_performance['holder_value'].values[0] - 1)
y_holder = 100 * (df_performance["holder_value"] / df_performance['holder_value'].values[0] - 1)
y_diff = y_lp - y_holder
P_account = figure(title="Performance", x_axis_label="time", y_axis_label=f"{quote_token}(%)",
height=250, sizing_mode="stretch_width", tools=tools, x_range=xdr)
P_account.line(all_datetime_range, y_lp, legend_label="LP Strategy", color="#E74C3C", line_width=1.5)
P_account.line(all_datetime_range, y_holder, legend_label="50/50 Holder", color="#F5B041", line_width=1.5)
h_line = Span(location=0, dimension='width', line_color='#17202A', line_dash='dashed', line_width=1)
P_account.add_layout(h_line)
P_account.legend.click_policy = "hide"
P_diff = figure(title="Difference", x_axis_label="time", y_axis_label=f"{quote_token}(%)",
height=250, sizing_mode="stretch_width", tools=tools, x_range=xdr)
P_diff.line(all_datetime_range, y_diff, legend_label="LP-Holder", color="#16A085", line_width=1.5)
h_line = Span(location=0, dimension='width', line_color='#17202A', line_dash='dashed', line_width=1)
P_diff.add_layout(h_line)
P_diff.legend.click_policy = "hide"
plots = [P_kline, P_vol, P_account, P_diff]
# crosshair
crosshair = CrosshairTool(dimensions="height")
for i in plots:
i.add_tools(crosshair)
# put together
grid = gridplot(plots, toolbar_location='right', ncols=1) # sizing_mode="stretch_width"
show(grid)
if __name__ == '__main__':
df = pd.read_csv('1640995220_1644345765.csv', index_col=0)
df_signal = pd.read_csv('data_with_signal.csv', index_col=0)
df_performance = cal_performance(df)
plot(df_performance=df_performance, df_signal=df_signal, trade_info=None, base_token_symbol='ETH', quote_token_symbol='USDC')