-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patherrorRates.R
255 lines (227 loc) · 10.6 KB
/
errorRates.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
source("~/genomedk/matovanalysis/umiseq_analysis/R/read_bed.R") #1/0 list
setwd ('~/genomedk/PolyA/faststorage/BACKUP/N140_Targeting/specs/specs_analysis')
source("sw_input_files/duplex_tools.R")
library("dplyr")
library("ggpubr")
pon_hg19 <- readRDS("~/genomedk/PolyA/faststorage/BACKUP/IMPROVE/call/references/200419_novaseq-xgen-sporacrc-pon.RDS") #
f3 <- function(a, M, S){
which(apply(a, c(2, 3), function(x)sum(sum(x >= M, na.rm=T) >= S))>0)
}
S =5; M=0.01;
#indP = f3(mafsP2, M, S)
indP = c(1598,2207,5434,8551,9245,11243,12551,13815,18170,18937,21378,21687,28047,29455,32718,35119,35254,37031,37182,39129,41149,47691,47769,49058,49983,50282,50377,51134,51276,51280,51289,54657,54661,54990,55624,63322,63689,64088,64382,66794,66987,68940)
#indP = c(1029,1638,4717, 7834, 9768, 11594, 18341, 27868, 33302, 35174, 40763, 42504, 42803, 42898, 43655, 43797, 43801, 43810, 46627, 46631, 47168, 54718, 58832)
VAFcut = 0.35
# 45 Subjects of the Control Panel of Normal PON ####################################################################
pon_obj2 <- readRDS("~/genomedk/PolyA/faststorage/BACKUP/N140_Targeting/specs/umiseq_paper/reference/201217_hg38-novaseq-xgen-sporacrc-pon.RDS") # 46
# pon_obj2 <- readRDS("sw_input_files/201020_hg38-novaseq-xgen-sporacrc-pon.RDS") # 45 subjects only, 1 is missing
pon_counts <- pon_obj2[["pon"]]
no0 = array(0, dim=c(dim(pon_counts)[1]-1,dim(pon_counts)[2],dim(pon_counts)[3]))
no0[1:27,,] <- pon_counts[1:27,,]
no0[28:45,,]<-pon_counts[29:46,,]
#no0<-pon_counts
no1 = array(0, dim=c(dim(no0)[1],sum(list),dim(no0)[3]))
for (i in 1:dim(no0)[1]) {
#i=1
no0[i,,][indP]<-NA # blacklist
p2 <- data.frame(no0[i,,])#PON
p1 <- p2 [list == 1, ]
no1[i,,] <- data.matrix(p1)
#no1[i,,][indP]<-NA # blacklist
}
no <- no1[,,1:4]+no1[,,6:9]
mafsP1 = array(0, dim=c(dim(no)[1],dim(no)[2],dim(no)[3]))
erP1<- vector()
auxMP <- rowSums(no, dims = 2)
for (i in 1:dim(no)[1]) {
#i = 1
mafsP1[i,,] <- no[i,,] /auxMP[i,]
erP1[i] <- mean(mafsP1[i,,][mafsP1[i,,]<= VAFcut], na.rm=T)
}
plot(erP1)
print(erP1)
#oL <- erP1[28]
#erP<-vector()
#erP[1:27]<- erP1[1:27]
#erP[28:45] <- erP1[29:46]
#mean(erP) + 3*sd(erP)
#mean(erP1) + 3*sd(erP1)
#oL
#shapiro.test(erP1)
#shapiro.test(erP)
#boxplot(erP1)
#boxplot(erP)
#boxplot(erQ1)
er <- list(errPno28=erP1, errQ17=erQ1, errI229=erI1, errC69=erC1[CRUKages>1], errDS8=erD1)
boxplot(er,notch = TRUE,horizontal = TRUE,border = "brown",col = c("green","blue","red","orange","black"))
PON<- read_xlsx('~/genomedk/matovanalysis/umiseq_analysis/2020-11-04_PON_age_gender.xlsx')
PON1 <- list()
PON1<-PON[1:27,]
PON11<-rbind(PON1,PON[29:46,])
age <- list(PON_age =PON11$age, F_age = PON11$age[PON11$gender=="F"], M_age = PON11$age[PON11$gender=="M"] )
boxplot(age,notch = TRUE,horizontal = TRUE,border = "brown",col = c("blue", "green", "red"))
er1 <- list(ePover53=erP1[PON11$age>53], ePless54=erP1[PON11$age<54])
boxplot(er1,notch = TRUE,horizontal = TRUE,border = "brown",col = c("blue","red"))
PON1 <- list()
PON1<-PON[1:27,]
PON11<-rbind(PON1,PON[29:46,])
p <- ggboxplot(ErrorRates, x = "gender", y = "age",
color = "gender", palette = "jco",
add = "jitter")
p + stat_compare_means()
p + stat_compare_means(method = "t.test")
IMPROVE <- read_xlsx('~/genomedk/matovanalysis/umiseq_analysis/2020-01-21_IMPROVE_samples_age.xlsx')
erI1 #229
PON11$age>53
CRUK <- read_xlsx('~/genomedk/matovanalysis/umiseq_analysis/2020-01-04_CRUK_sample_status.xlsx')
CRUKlist <- CRUK$`Biobank label`[CRUK$sequenced=="yes"]#80
listCRUK <- unlist(sapply(CRUKlist, function(x) grep(x, x = pileupsC )))
pileupsC[listCRUK] # 69
CRUK$pt_age[listCRUK]
CRUKages <- CRUK$pt_age[listCRUK] # 69
CRUKages>70 & CRUKages<81
erC1[CRUKages>80] # 10
erC1[CRUKages>70 & CRUKages<81] # 25
erC1[CRUKages>60 & CRUKages<71] # 19
erC1[CRUKages>50 & CRUKages<61] # 11
erC1[CRUKages<51] # 4
length(IMPROVE$age_at_sample_time)
length(erI1)
erCI <- list(Int5=c(erC1[CRUKages>80],erI1[IMPROVE$age_at_sample_time>80]),
Int4=c(erC1[CRUKages>70 & CRUKages<81],erI1[IMPROVE$age_at_sample_time>70 & IMPROVE$age_at_sample_time<81]),
Int3=c(erC1[CRUKages>60 & CRUKages<71],erI1[IMPROVE$age_at_sample_time>60 & IMPROVE$age_at_sample_time<71]),
Int2=c(erC1[CRUKages>50 & CRUKages<61],erI1[IMPROVE$age_at_sample_time>50 & IMPROVE$age_at_sample_time<61]),
Int1=c(erC1[CRUKages<51],erI1[IMPROVE$age_at_sample_time<51]))
boxplot(erCI,notch = TRUE,horizontal = TRUE,border = "brown",col = c("red","orange", "brown","blue","green"))
listCRUKhe <- unlist(sapply(CRUK$`Biobank label`, function(x) grep(x, x = pileupsC[1:8])))#7
CRUK$pt_age[CRUK$`Biobank label`=="S07A05776D"]#"53"
erCH <- 2.173574e-05
CRUKheAge <- 53
erP1[PON11$age<54]
QIAGEN<- read_xlsx('~/genomedk/matovanalysis/umiseq_analysis/2020-11-04_PON_age_gender.xlsx', sheet = 2)
qiagenList <- list()
qiagenList[1:15]<-pileupsQ[1:15]
qiagenList[16:22]<-pileupsQ[18:24]
listQiagen <- unlist(sapply(QIAGEN$donor, function(x) grep(x, x = unlist(qiagenList))))#7
#16 and 17 are D415 (#22 in the list) and D1416 (#7 in the list)
QIAGEN$age
qAge <- vector()
qAge[1:15]<-QIAGEN$age[1:15]
qAge[16:22]<-QIAGEN$age[18:24]
erPQ <- list(Int3=c(erQ1[qAge>60 & qAge<71],erP1[PON11$age>60 & PON11$age<71]),
Int2=c(erQ1[qAge>50 & qAge<61],erP1[PON11$age>50 & PON11$age<61],erCH),
Int1=c(erQ1[qAge<51],erP1[PON11$age<51]))
boxplot(erPQ,notch = TRUE,horizontal = TRUE,border = "brown",col = c("brown","blue","green"))
# QIAGEN healthy samples ############################################################################################
pileupsQ <- list.files("~/genomedk/PolyA/faststorage/BACKUP/N140_Targeting/qiagen_kit_test/201019", recursive = T, full.names = T, pattern = "bait.pileup")
countsQ00 <- piles_to_counts(files = pileupsQ,
regions = pon_hg19$regions)
#countsQ = array(0, dim=c(dim(countsQ00)[1]-2,dim(countsQ00)[2],dim(countsQ00)[3]))
countsQ = array(0, dim=c(dim(countsQ00)[1]-1,dim(countsQ00)[2],dim(countsQ00)[3]))
countsQ[1:16,,] <- countsQ00[1:16,,]
#countsQ[17:22,,]<-countsQ00[19:24,,]
countsQ[17:23,,]<-countsQ00[18:24,,]
countsQ0 <- countsQ
countsQ= array(0, dim=c(dim(countsQ0)[1],sum(list),dim(countsQ0)[3]))
for (i in 1:dim(countsQ0)[1]) {
countsQ0[i,,][indP]<-NA # blacklist
p2 <- data.frame(countsQ0[i,,])
p1 <- p2 [list == 1, ]
countsQ[i,,] <- data.matrix(p1)
}
countsQ1 <- countsQ[,,1:4] + countsQ[,,6:9]
erQ1<- vector()
mafsQ1 = array(0, dim=c(dim(countsQ1)[1],dim(countsQ1)[2],dim(countsQ1)[3]))
auxMQ <- rowSums(countsQ1, dims = 2)
for (i in 1:dim(countsQ1)[1]) {
#i=2
mafsQ1[i,,] <- countsQ1[i,,] /auxMQ[i,]
erQ1[i] <- mean(mafsQ1[i,,][mafsQ1[i,,]<= VAFcut], na.rm=T)
}
plot(erQ1)
print(erQ1)
### IMPROVE #####
pileupsI <- list.files("~/genomedk/PolyA/faststorage/BACKUP/IMPROVE/sporacrc/N227", recursive = T, full.names = T, pattern = "bait.pileup$")
countsI0 <- piles_to_counts(files = pileupsI[1:213], # DEC 8 noon, there are 61 IMPROVE files.
regions = pon_hg19$regions)
countsI= array(0, dim=c(dim(countsI0)[1],sum(list),dim(countsI0)[3]))
for (i in 1:dim(countsI0)[1]) {
countsI0[i,,][indP]<-NA # blacklist
p2 <- data.frame(countsI0[i,,])
p1 <- p2 [list == 1, ]
countsI[i,,] <- data.matrix(p1)
}
countsI1 <- countsI[,,1:4] + countsI[,,6:9]
erI1<- vector()
mafsI1 = array(0, dim=c(dim(countsI1)[1],dim(countsI1)[2],dim(countsI1)[3]))
auxMI <- rowSums(countsI1, dims = 2)
for (i in 1:dim(countsI1)[1]) {
mafsI1[i,,] <- countsI1[i,,] /auxMI[i,]
erI1[i] <- mean(mafsI1[i,,][mafsI1[i,,]<= VAFcut], na.rm=T)
}
plot(erI1)
# CRUK patient samples ##########################################################################################
pileupsC <- list.files("~/genomedk/PolyA/faststorage/BACKUP/CRUK/plasma/N289", recursive = T, full.names = T, pattern = "bait.pileup")
countsC0 <- piles_to_counts(files = pileupsC[1:90], #pileupsC[listCRUK], #,
regions = pon_hg19$regions)
countsC= array(0, dim=c(dim(countsC0)[1],sum(list),dim(countsC0)[3]))
for (i in 1:dim(countsC0)[1]) {
countsC0[i,,][indP]<-NA # blacklist
p2 <- data.frame(countsC0[i,,])#CRUK
p1 <- p2 [list == 1, ]
countsC[i,,] <- data.matrix(p1)
}
countsC1 <- countsC[,,1:4] + countsC[,,6:9]
erCH1<- vector()
mafsC1 = array(0, dim=c(dim(countsC1)[1],dim(countsC1)[2],dim(countsC1)[3]))
auxMC <- rowSums(countsC1, dims = 2)
for (i in 1:dim(countsC1)[1]) {
mafsC1[i,,] <- countsC1[i,,] /auxMC[i,]
erCH1[i] <- mean(mafsC1[i,,][mafsC1[i,,]<= VAFcut], na.rm=T)
}
plot(erCH1)
# DS samples ##################################################################################################
dat0 <- readRDS("sw_output_files/2020-10-23-145546_sw-output.RDS")
pileupsD <- unlist(attributes(dat0))
pileupsD <- sub("/faststorage/project/PolyA/BACKUP", "~/genomedk/PolyA/faststorage/BACKUP", pileupsD)
all(file.exists(pileupsD))
countsD <- piles_to_counts(files = pileupsD,
regions = pon_obj2$regions)
countsDD= array(0, dim=c(dim(countsD)[1],sum(list),dim(countsD)[3]))
founderinfo <- readRDS("200330_founder-mutations-method1.RDS")
fI<-founderinfo[1:90,]# only the 90 mutations info
inMu <- fI$index# indexes of the 90 mutations on the panel
for (i in 1:dim(countsD)[1]) {
countsD[i,,][inMu]<-NA # panel
countsD[i,,][indP]<-NA # blacklist
p2 <- data.frame(countsD[i,,])
p1 <- p2 [list == 1, ]
countsDD[i,,] <- data.matrix(p1)
}
countsD1 <- countsDD[,,1:4] + countsDD[,,6:9]
mafsD1 = array(0, dim=c(dim(countsD1)[1],dim(countsD1)[2],dim(countsD1)[3]))
erD1<- vector()
auxMD <- rowSums(countsD1, dims = 2)
for (i in 1:dim(countsD1)[1]) {
mafsD1[i,,] <- countsD1[i,,] /auxMD[i,]
erD1[i] <- mean(mafsD1[i,,][mafsD1[i,,]<= VAFcut], na.rm=T)
}
plot(erD1)
###########################################################################################################
plot(erQ1, na.rm=T,ylim=range(c(1e-05,0.00011)), col="green", pch = 17)
par(new = TRUE)
plot(erP1, na.rm=T,ylim=range(c(1e-05,0.00011)), col="purple", pch = 12)
legend(3,1.1e-04,legend=c("QIAGEN", "PON"),col=c("green","blue"),lty=1:1, cex=1.0)
mean(erQ1, na.rm=T)
mean(erP1, na.rm=T)
###########################################################################################################
plot(erI1, ylim=range(c(1e-05,0.00011)), col="orange", main = "Error rate", pch = 15)
par(new = TRUE)
plot(erC1, ylim=range(c(1e-05,0.00011)), col="red", pch = 19)
par(new = TRUE)
plot(erQ1, ylim=range(c(1e-05,0.00011)), col="green", pch = 17)
par(new = TRUE)
plot(erP1, ylim=range(c(1e-05,0.00011)), col="purple", pch = 12)
par(new = TRUE)
plot(erD1, ylim=range(c(1e-05,0.00011)), col="blue", pch = 11)
legend(3,1.1e-04,legend=c("IMPROVE", "CRUK","QIAGEN", "PON","DS"),col=c("orange","red","green","purple","blue"),lty=1:1, cex=1.0)