-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathmodel.py
166 lines (133 loc) · 5.64 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import json
import os
import pickle
from zipfile import ZipFile
import pandas as pd
from sklearn.kernel_ridge import KernelRidge
from sklearn.linear_model import BayesianRidge, LinearRegression
from sklearn.svm import SVR
from updater import download_binance_daily_data, download_binance_current_day_data, download_coingecko_data, download_coingecko_current_day_data
from config import data_base_path, model_file_path, TOKEN, MODEL, CG_API_KEY
binance_data_path = os.path.join(data_base_path, "binance")
coingecko_data_path = os.path.join(data_base_path, "coingecko")
training_price_data_path = os.path.join(data_base_path, "price_data.csv")
def download_data_binance(token, training_days, region):
files = download_binance_daily_data(f"{token}USDT", training_days, region, binance_data_path)
print(f"Downloaded {len(files)} new files")
return files
def download_data_coingecko(token, training_days):
files = download_coingecko_data(token, training_days, coingecko_data_path, CG_API_KEY)
print(f"Downloaded {len(files)} new files")
return files
def download_data(token, training_days, region, data_provider):
if data_provider == "coingecko":
return download_data_coingecko(token, int(training_days))
elif data_provider == "binance":
return download_data_binance(token, training_days, region)
else:
raise ValueError("Unsupported data provider")
def format_data(files, data_provider):
if not files:
print("Already up to date")
return
if data_provider == "binance":
files = sorted([x for x in os.listdir(binance_data_path) if x.startswith(f"{TOKEN}USDT")])
elif data_provider == "coingecko":
files = sorted([x for x in os.listdir(coingecko_data_path) if x.endswith(".json")])
# No files to process
if len(files) == 0:
return
price_df = pd.DataFrame()
if data_provider == "binance":
for file in files:
zip_file_path = os.path.join(binance_data_path, file)
if not zip_file_path.endswith(".zip"):
continue
myzip = ZipFile(zip_file_path)
with myzip.open(myzip.filelist[0]) as f:
line = f.readline()
header = 0 if line.decode("utf-8").startswith("open_time") else None
df = pd.read_csv(myzip.open(myzip.filelist[0]), header=header).iloc[:, :11]
df.columns = [
"start_time",
"open",
"high",
"low",
"close",
"volume",
"end_time",
"volume_usd",
"n_trades",
"taker_volume",
"taker_volume_usd",
]
df.index = [pd.Timestamp(x + 1, unit="ms").to_datetime64() for x in df["end_time"]]
df.index.name = "date"
price_df = pd.concat([price_df, df])
price_df.sort_index().to_csv(training_price_data_path)
elif data_provider == "coingecko":
for file in files:
with open(os.path.join(coingecko_data_path, file), "r") as f:
data = json.load(f)
df = pd.DataFrame(data)
df.columns = [
"timestamp",
"open",
"high",
"low",
"close"
]
df["date"] = pd.to_datetime(df["timestamp"], unit="ms")
df.drop(columns=["timestamp"], inplace=True)
df.set_index("date", inplace=True)
price_df = pd.concat([price_df, df])
price_df.sort_index().to_csv(training_price_data_path)
def load_frame(frame, timeframe):
print(f"Loading data...")
df = frame.loc[:,['open','high','low','close']].dropna()
df[['open','high','low','close']] = df[['open','high','low','close']].apply(pd.to_numeric)
df['date'] = frame['date'].apply(pd.to_datetime)
df.set_index('date', inplace=True)
df.sort_index(inplace=True)
return df.resample(f'{timeframe}', label='right', closed='right', origin='end').mean()
def train_model(timeframe):
# Load the price data
price_data = pd.read_csv(training_price_data_path)
df = load_frame(price_data, timeframe)
print(df.tail())
y_train = df['close'].shift(-1).dropna().values
X_train = df[:-1]
print(f"Training data shape: {X_train.shape}, {y_train.shape}")
# Define the model
if MODEL == "LinearRegression":
model = LinearRegression()
elif MODEL == "SVR":
model = SVR()
elif MODEL == "KernelRidge":
model = KernelRidge()
elif MODEL == "BayesianRidge":
model = BayesianRidge()
# Add more models here
else:
raise ValueError("Unsupported model")
# Train the model
model.fit(X_train, y_train)
# create the model's parent directory if it doesn't exist
os.makedirs(os.path.dirname(model_file_path), exist_ok=True)
# Save the trained model to a file
with open(model_file_path, "wb") as f:
pickle.dump(model, f)
print(f"Trained model saved to {model_file_path}")
def get_inference(token, timeframe, region, data_provider):
"""Load model and predict current price."""
with open(model_file_path, "rb") as f:
loaded_model = pickle.load(f)
# Get current price
if data_provider == "coingecko":
X_new = load_frame(download_coingecko_current_day_data(token, CG_API_KEY), timeframe)
else:
X_new = load_frame(download_binance_current_day_data(f"{TOKEN}USDT", region), timeframe)
print(X_new.tail())
print(X_new.shape)
current_price_pred = loaded_model.predict(X_new)
return current_price_pred[0]