forked from bjader/QSSL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_probe_simclr-fingerprint.py
778 lines (643 loc) · 30.4 KB
/
linear_probe_simclr-fingerprint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Run linear probe experiment to evaluate self-supervised feature quality.
Example:
python linear_probe.py \
--pretrained model/selfsup/resnet18-bsize_512-checkpoint_0020.path.tar \
--gpu 0 -a resnet18
Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
import argparse
import os
import random
import shutil
import sys
import time
import warnings
from datetime import datetime
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
from torch.utils.data.dataset import Dataset
import torchvision.models as models
import torchvision.transforms as transforms
from torch.utils import data
from PIL import Image
import pandas as pd
import os
from scipy.io import loadmat
from torch.utils.data import DataLoader
import cv2
import hybrid_resnet
import moco.builder
# Imports for yaspi
import sys
import json
import getpass
from pathlib import Path
import itertools
from yaspi.yaspi import Yaspi
os.environ['KMP_WARNINGS'] = '0'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='Execute linear probe experiment')
parser.add_argument('-d', '--datadir', metavar='DIR', default="data", type=Path,
help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=model_names,
help=f'model arch: {"|".join(model_names)} (default: resnet50)')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=5, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--classes', default=600, type=int,
help='Number of classes in the training set (default:10)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[60, 80], nargs='*', type=int,
help='learning rate schedule (when to drop lr by a ratio)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0., type=float,
metavar='W', help='weight decay (default: 0.)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--pretrained', default='', type=str,
help='path to moco pretrained checkpoint')
parser.add_argument('--sigtemp', default=1.0, type=float,
help='Pre-quantum Sigmoid temperature (default: 1.0)')
parser.add_argument('--batchnorm', dest='batchnorm', action='store_true',
help='If enabled, apply BatchNorm1d to the input of the pre-quantum Sigmoid.')
parser.add_argument('--identity', dest='identity', action='store_true',
help='If enabled, the test network is replaced by the identity. The previous and subsequent layer '
'still compress to n_qubits however.')
parser.add_argument('-w', '--width', type=int, default=4,
help='Width of the test network (default: 4). If quantum, this is the number of qubits.')
parser.add_argument('--layers', type=int, default=2,
help='Number of layers in the test network (default: 2).')
parser.add_argument('-q', '--quantum', dest='quantum', action='store_true',
help='If enabled, use a minimised version of ResNet-18 with QNet as the final layer')
parser.add_argument('--q_backend', type=str, default='qasm_simulator',
help='Type of backend simulator to run quantum circuits on (default: qasm_simulator)')
parser.add_argument('--encoding', type=str, default='vector',
help='Data encoding method (default: vector)')
parser.add_argument('--q_ansatz', type=str, default='sim_circ_14_half',
help='Variational ansatz method (default: sim_circ_14_half)')
parser.add_argument('--q_sweeps', type=int, default=1,
help='Number of ansatz sweeeps.')
parser.add_argument('--activation', type=str, default='partial_measurement_half',
help='Quantum layer activation function type (default: partial_measurement_half)')
parser.add_argument('--shots', type=int, default=100,
help='Number of shots for quantum circuit evaulations.')
parser.add_argument('--save-dhs', action='store_true',
help='If enabled, compute the Hilbert-Schmidt distance of the quantum statevectors belonging to'
' each class. Only works for -q and --classes 2.')
parser.add_argument('--submission-time', type=str, default='',
help='Date and time of yaspify submission to create output directory.')
# --------------------------------------------------------------------------------
# cluster grid options
parser.add_argument("--yaspify", action="store_true")
parser.add_argument("--slurm", action="store_true")
parser.add_argument("--worker_id", type=int, default=0)
parser.add_argument("--yaspi_defaults_path", default="yaspi_probe_defaults.json")
parser.add_argument("--exp_config", default="yaspi_probe.json", type=Path)
# --------------------------------------------------------------------------------
best_acc1 = 0
acc1_list = []
train_loss_list = []
train_acc_list = []
test_loss_list = []
# python linear_probe_simclr.py --pretrained model/selfsup/path_to_checkpoint_0000.path.tar -q --q_backend qasm_simulator --q_ansatz sim_circ_14_half -w 8 --classes 5
args = parser.parse_args(args=['--gpu', '0', '--pretrained', 'model/selfsup/simclr/SimCLR-resnet34-quantum_False-classes_600-netwidth_8-nlayers_2-identity_False-epochsize_6000-bsize_128-tepochs_15_0/checkpoint_0014_0036.path.tar', '-q', '--q_backend', 'qasm_simulator', '--q_ansatz', 'sim_circ_14_half', '-w', '8', '-a', 'resnet18']) # for jupyter notebook
#args = parser.parse_args()
# +
# 2023-3-12 custom dataset created by Allen LIN
class fingerprintDataset(Dataset):
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.targets = self.img_labels.iloc[:, 1] # label of the dataset
self.target_transform = target_transform
img_path = os.path.join(self.img_dir, self.img_labels.iloc[0, 0])
image = cv2.imread(img_path)
self.data = np.empty((len(self.img_labels), *image.shape), dtype=np.uint8)
for i in range(len(self.img_labels)):
self.data[i] = image
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
def __len__(self):
return len(self.img_labels)
# -
def main():
#args = parser.parse_args() for command line
# --------------------------------------------------------------------------------
# Support cluster grid search
if args.yaspify:
# Load cluster job options
with open(args.yaspi_defaults_path, "r") as f:
yaspi_defaults = json.load(f)
# Load experiment hyperparams for the demo
with open(args.exp_config, "r") as f:
exp_kwargs = json.load(f)
cmd_args = sys.argv
cmd_args.remove("--yaspify")
directory = args.pretrained
cmd_args.remove("--pretrained")
cmd_args.remove(directory)
checkpoints = []
for model in os.listdir(directory):
for tepoch in exp_kwargs["tepochs"]:
if type(tepoch) == str and '_' in tepoch:
epoch_string, batch_string = tepoch.split('_')
fname = f"checkpoint_{int(epoch_string):04d}_{int(batch_string):04d}.path.tar"
else:
fname = f"checkpoint_{int(tepoch):04d}.path.tar"
checkpoint = os.path.join(directory, model, fname)
print(checkpoint)
if os.path.exists(checkpoint):
checkpoints.append(checkpoint)
else:
print(f"Cannot find checkpoint {checkpoint}.")
print(checkpoints)
del exp_kwargs["tepochs"]
exp_kwargs["pretrained"] = checkpoints
cmd_args.append('--submission-time')
cmd_args.append(datetime.now().strftime(r"%Y-%m-%d_%H-%M-%S"))
base_cmd = f"python {' '.join(cmd_args)} --slurm"
job_name = f"train-simclr-{args.exp_config.stem}"
# compute cartesian product of options
job_queue = []
hparam_vals = [x for x in exp_kwargs.values()]
grid_vals = list(itertools.product(*hparam_vals))
hparams = list(exp_kwargs)
for vals in grid_vals:
kwargs = " ".join(f"--{hparam} {val}" for hparam, val in zip(hparams, vals))
job_queue.append(f'"{kwargs}"')
job = Yaspi(
cmd=base_cmd,
job_queue=" ".join(job_queue),
job_name=job_name,
job_array_size=len(job_queue),
**yaspi_defaults,
)
job.submit(watch=True, conserve_resources=5)
else:
if args.slurm:
# add any cluster-specific setup you need to do here. E.g. I run a script
# sets up some temporary symlinks
if getpass.getuser() == "albanie":
os.system(str(Path.home() / "configure_tmp_data.sh"))
print('=' * 30)
print('==> Training Setting: \n {}'.format(args))
print('=' * 30)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
ngpus_per_node = torch.cuda.device_count()
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
# +
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
global acc1_list
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# load from pre-trained, before DistributedDataParallel constructor
if args.pretrained:
if os.path.isfile(args.pretrained):
print("=> loading checkpoint '{}'".format(args.pretrained))
# Load hyperparams of trained network
train_args = json.load(open(os.path.join(os.path.dirname(args.pretrained), "train_args.json"), "r"))
args.arch = train_args["arch"]
args.identity = train_args["identity"]
args.width = train_args["width"]
args.layers = train_args["layers"]
args.quantum = train_args["quantum"]
args.q_ansatz = train_args["q_ansatz"]
args.q_sweeps = train_args["q_sweeps"]
args.activation = train_args["activation"]
args.shots = train_args["shots"]
# create model
print("=> creating model '{}'".format(args.arch))
model = moco.builder.SimCLR(hybrid_resnet.resnet18, args=args).encoder
# freeze all layers but the last fc
for name, param in model.named_parameters():
if name not in ['fc.weight', 'fc.bias']:
param.requires_grad = False
# init the fc layer
model.fc = torch.nn.Linear(model.fc[0].in_features, args.classes, bias=True)
checkpoint = torch.load(args.pretrained, map_location="cpu")
# rename moco pre-trained keys
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
# retain only encoder_q up to before the embedding layer
if k.startswith('encoder') and not k.startswith('encoder.fc'):
# remove prefix
state_dict[k[len("encoder."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
args.start_epoch = 0
msg = model.load_state_dict(state_dict, strict=False)
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
print("=> loaded pre-trained model '{}'".format(args.pretrained))
else:
print("=> no checkpoint found at '{}'".format(args.pretrained))
else:
# create model
print("=> creating model '{}'".format(args.arch))
model = moco.builder.SimCLR(hybrid_resnet.resnet18, args=args).encoder
# freeze all layers but the last fc
for name, param in model.named_parameters():
if name not in ['fc.weight', 'fc.bias']:
param.requires_grad = False
# init the fc layer
model.fc = torch.nn.Linear(model.fc[0].in_features, args.classes, bias=True)
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
print('=> Training with CPU.')
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
# optimize only the linear classifier
parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
assert len(parameters) == 2 # fc.weight, fc.bias
optimizer = torch.optim.Adam(parameters, lr=1e-3, weight_decay=1e-6)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume, map_location="cpu")
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
training_annotations_file = os.path.join("kaggle_fingerprint", "kaggle_validation_fingerprint_annotations.csv") # 暫時改成 validation (測試小資料)
validation_annotations_file = os.path.join("kaggle_fingerprint", "kaggle_testing_fingerprint_annotations.csv")
img_dir = os.path.join("kaggle_fingerprint", "SOCOFing", "All")
# Normalization for SOCOFing Fingerprint dataset
normalize = transforms.Normalize(mean=[0.5071],
std=[0.4107])
augmentation = [
transforms.ToPILImage(), # to PIL format
transforms.Resize((90, 90)),
transforms.RandomResizedCrop(32),
# transforms.RandomApply([
# transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened
# ], p=0.8),
transforms.RandomGrayscale(p=0.2),
# transforms.RandomApply([moco.loader.GaussianBlur([.1, 2.])], p=0.5),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
normalize
]
num_classes = args.classes
train_dataset = fingerprintDataset(training_annotations_file, img_dir, transform=transforms.Compose(augmentation))
val_dataset = fingerprintDataset(validation_annotations_file, img_dir,
transform=transforms.Compose([
transforms.ToPILImage(), # to PIL format
transforms.Resize((32, 32)),
transforms.ToTensor(),
normalize,
]))
# # Before split dataset
# print("Before split")
# print('Train data set:', len(train_dataset))
# print('Test data set:', len(val_dataset))
# # Random split
# train_set_size = int(len(train_dataset) * 0.8)
# valid_set_size = len(train_dataset) - train_set_size
# train_dataset, val_dataset = data.random_split(train_dataset, [train_set_size, valid_set_size])
# # After split (to sperate training and validation)
# print('='*30)
# print("After split")
# print('Train data set:', len(train_dataset))
# print('Valid data set:', len(val_dataset))
# # training
# train_labels = np.array(train_dataset.targets)
# train_idx = np.array(
# [np.where(train_labels == i)[0] for i in range(0, num_classes)]).flatten()
# print(f'train_idx.size: {train_idx.size}')
# train_dataset.targets = train_labels[train_idx]
# train_dataset.data = train_dataset.data[train_idx]
# # validation
# val_labels = np.array(val_dataset.targets)
# val_idx = np.array(
# [np.where(val_labels == i)[0] for i in range(0, num_classes)]).flatten()
# print(f'val_idx.size: {val_idx.size}')
# val_dataset.targets = val_labels[val_idx]
# val_dataset.data = val_dataset.data[val_idx]
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion, args)
return
model_path = create_output_model_path(args)
print('Linear probing model saved at {}'.format(model_path))
avg_loss, avg_acc = 0, 0
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
avg_loss, avg_acc= train(train_loader, model, criterion, optimizer, epoch, args)
#train_loss_list.append(avg_loss)
#train_acc_list.append(avg_acc)
# evaluate on validation set
avg_loss, acc1 = validate(val_loader, model, criterion, args)
#test_loss_list.append(avg_loss)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
# add acc1 to list for printing
#acc1_list.append(round(acc1.item(), 3))
print(acc1_list)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}, is_best, model_path)
if epoch == args.start_epoch and args.pretrained != '':
sanity_check(model.state_dict(), args.pretrained)
# -
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top2 = AverageMeter('Acc@2', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top2],
prefix="Epoch: [{}/{}]".format(epoch, args.epochs))
"""
Switch to eval mode:
Under the protocol of linear classification on frozen features/models,
it is not legitimate to change any part of the pre-trained model.
BatchNorm in train mode may revise running mean/std (even if it receives
no gradient), which are part of the model parameters too.
"""
model.eval()
size = len(train_loader.dataset) # 資料總筆數
num_batches = len(train_loader) # 批次數量
total_loss, total_correct = 0, 0 # for calculate avg loss
end = time.time()
global train_acc_list
global train_loss_list
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
#print(f'target.min(): {target.min()}, target.max(): {target.max()}')
loss = criterion(output, target)
total_loss += loss.item()
train_loss_list += [loss.item()]
# measure accuracy and record loss
acc1, acc2 = accuracy(output, target, topk=(1, 2))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top2.update(acc2[0], images.size(0))
total_correct += top1.val.item()
train_acc_list += [top1.avg]
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
return total_loss/num_batches, total_correct
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top2 = AverageMeter('Acc@2', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top2],
prefix='Test: ')
# switch to evaluate mode
model.eval()
num_batch = len(val_loader) # # 批次數量
total_loss = 0 # 定義平均 loss 用
global test_loss_list
global acc1_list
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
total_loss += loss.item()
test_loss_list += [loss.item()]
# measure accuracy and record loss
acc1, acc2 = accuracy(output, target, topk=(1, 2))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top2.update(acc2[0], images.size(0))
acc1_list += [top1.avg.item()]
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
print(' * Acc@1 {top1.avg:.3f} Acc@2 {top2.avg:.3f}'
.format(top1=top1, top2=top2))
return total_loss/num_batch, top1.avg
def create_output_model_path(args, version=0):
if os.path.exists(args.pretrained):
file_name = f'{args.pretrained.split(os.sep)[-2]}_{args.pretrained.split(os.sep)[-1].split(".")[0]}_{version}'
else:
if args.quantum:
file_name = 'SimCLR-{}-quantum_{}-classes_{}-netwidth_{}-nlayers_{}-nsweeps_{}-activation_{}-shots_{}-bsize_{}-scratch_{}'.format(
args.arch, args.quantum, args.classes, args.width, args.layers, args.q_sweeps,
args.activation, args.shots, args.batch_size, version)
else:
file_name = 'SimCLR-{}-quantum_{}-classes_{}-netwidth_{}-nlayers_{}-identity_{}-bsize_{}-scratch_{}'.format(
args.arch, args.quantum, args.classes, args.width, args.layers, args.identity,
args.batch_size, version)
model_path = os.path.join('model', 'sup', 'simclr', args.submission_time, file_name)
if os.path.exists(model_path):
return create_output_model_path(args, version=version + 1)
else:
os.makedirs(model_path)
return model_path
def save_checkpoint(state, is_best, model_path, filename='checkpoint.pth.tar'):
torch.save(state, os.path.join(model_path, filename))
if is_best:
fname = os.path.join(model_path, 'model_best.pth.tar')
shutil.copyfile(os.path.join(model_path, filename), fname)
def sanity_check(state_dict, pretrained_weights):
"""
Linear classifier should not change any weights other than the linear layer.
This sanity check asserts nothing wrong happens (e.g., BN stats updated).
"""
print("=> loading '{}' for sanity check".format(pretrained_weights))
checkpoint = torch.load(pretrained_weights, map_location="cpu")
state_dict_pre = checkpoint['state_dict']
for k in list(state_dict.keys()):
# only ignore fc layer
if 'fc.weight' in k or 'fc.bias' in k:
continue
# name in pretrained model
k_pre = 'encoder.' + k[len('module.'):] \
if k.startswith('module.') else 'encoder.' + k
assert ((state_dict[k].cpu() == state_dict_pre[k_pre]).all()), \
'{} is changed in linear classifier training.'.format(k)
print("=> sanity check passed.")
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()
# +
def save_loss(train_loss, test_loss, save_path):
plt.clf() # Clear the figure
plt.xlabel('Training Batches')
plt.ylabel('Loss')
plt.title("Linear Evaluation Loss")
plt.plot(train_loss, label = "Training") # training loss curve
plt.plot(test_loss, label = "Validation") # testing loss curve
plt.legend(loc = 'upper left')
plt.savefig(save_path, bbox_inches='tight')
def save_acc(train_acc, test_acc, save_path):
plt.clf() # Clear the figure
plt.xlabel('Training Batches')
plt.ylabel('Accuracy(%)')
plt.title("Top1 Accuracy")
plt.plot(train_acc, label = "Training") # training acc curve
plt.plot(test_acc, label = "Validation") # testing acc curve
plt.legend(loc = 'upper left')
plt.savefig(save_path, bbox_inches='tight')
def save_result_fig(args, name, version=0):
result_path = os.path.join('results', "Allen's Result", "SOCOFing_Fingerprint", "SimCLR", "Linear Evaluation",
'quantum_epochsize_{}-bsize_{}-tepochs_{}_{}_{}_Fig.jpg'.format("55270", args.batch_size, args.epochs, name, version))
if os.path.exists(result_path):
return save_result_fig(args, name, version+1)
else:
return result_path
# +
import matplotlib.pyplot as plt
fig_loss_path = save_result_fig(args, "Loss")
fig_loss = save_loss(train_loss_list, test_loss_list, fig_loss_path)
fig_acc_path = save_result_fig(args, "Acc")
fig_acc = save_acc(train_acc_list, acc1_list, fig_acc_path)
# -