-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew_model.py
257 lines (225 loc) · 10.9 KB
/
new_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import uuid
from os import listdir
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
from tqdm import tqdm
from read_data import get_doc_scores_bq
np.random.seed(0)
tf.random.set_random_seed(0)
class ProbRegressor:
def __init__(self, seed, input_size, learning_rate):
det_model_w_mse = False
self.seed = seed
self.global_step = tf.Variable(0, trainable=False)
self.scaler = tf.Variable(1., trainable=True)
self.input_data = tf.placeholder(dtype=tf.float32, shape=(None, input_size), name='data')
self.labels = tf.placeholder(dtype=tf.float32, shape=None, name='labels')
self.hidd_repr = self.input_data
self.bn = tf.keras.layers.LayerNormalization()
self.hidd_repr = self.bn(self.hidd_repr)
self.hidd_repr = tf.layers.dense(self.hidd_repr, 32, activation=tf.nn.sigmoid)
if det_model_w_mse:
print('DET model with MSE')
self.last_layer = tfp.layers.DenseFlipout(1, activation=tf.nn.sigmoid) # 8 is the best for trec 5, 16 is not bad
self.output = self.last_layer(self.hidd_repr)
self.mse_loss = tf.reduce_mean(tf.square(self.output - self.labels))
self.loss = self.mse_loss
# n = input_size
# self.loss = tf.reduce_mean(tf.log((1e-6 + self.labels) / (1e-6 + self.output)) * n * self.labels + tf.log(
# (1e-6 + 1 - self.labels) / (1e-6 + 1 - self.output)) * n * (1 - self.labels))
else:
print('PROB model with KL LOSS')
self.last_layer = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)
self.output = self.last_layer(self.hidd_repr)
# self.mse_loss = tf.reduce_mean(tf.square(self.output - self.labels))
# self.loss = self.mse_loss
n = input_size
self.loss = tf.reduce_mean(tf.log((1e-6 + self.labels) / (1e-6 + self.output)) * n * self.labels + tf.log(
(1e-6 + 1 - self.labels) / (1e-6 + 1 - self.output)) * n * (1 - self.labels))
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS)
train_op = optimizer.minimize(self.loss, global_step=self.global_step)
self.init_op = tf.group(tf.compat.v1.global_variables_initializer(),
tf.compat.v1.local_variables_initializer())
self.train_op = tf.group([train_op, update_ops])
self.saver = tf.train.Saver(max_to_keep=None)
class ProbLayer(tf.keras.layers.Layer):
@staticmethod
def posterior_mean_field(kernel_size, bias_size=0, dtype=None):
tfd = tfp.distributions
n = kernel_size + bias_size
c = np.log(np.expm1(1.))
return tf.keras.Sequential([
tfp.layers.VariableLayer(2 * n, dtype=dtype),
tfp.layers.DistributionLambda(lambda t: tfd.Independent(
tfd.Normal(loc=t[..., :n], scale=1e-5 + tf.nn.softplus(c + t[..., n:])), reinterpreted_batch_ndims=1)),
])
@staticmethod
def prior_trainable(kernel_size, bias_size=0, dtype=None):
tfd = tfp.distributions
n = kernel_size + bias_size
return tf.keras.Sequential([
tfp.layers.VariableLayer(n, dtype=dtype),
tfp.layers.DistributionLambda(
lambda t: tfd.Independent(tfd.Normal(loc=t, scale=1), reinterpreted_batch_ndims=1)),
])
def __init__(self, seed, output_size, batch_size, activ):
super(ProbLayer, self).__init__()
self.seed = seed
self.layer = tfp.layers.DenseVariational(output_size, self.posterior_mean_field, self.prior_trainable,
activation=activ,
kl_weight=1 / batch_size)
def call(self, input, **kwargs):
return self.layer(input)
def train_multiple_models(run_paths, rdbq, train_qnames, collection, seed, learning_rate,
best_models_prev_folds, models_dir, fold, batch_size=8, n_epochs=300):
# batch_size = 4 # 8 is best on robust, 4 on gov2
# n_epochs = 300 # 500
# models_dir = os.getcwd() + '/saved_models'
print('epochs: {}, batch_size: {}'.format(n_epochs, batch_size))
best_model_paths = []
for run_path in tqdm(run_paths):
x, y = compute_training_distributions(get_doc_scores_bq(run_path), rdbq, train_qnames, collection)
# print('fitting regression model')
best_model_path = train_model(x, y, seed, learning_rate, models_dir, fold, n_epochs=n_epochs,
batch_size=batch_size)
best_model_paths.append(best_model_path)
models_files = [f for f in listdir(models_dir) if os.path.isfile(os.path.join(models_dir, f))]
for mf in models_files:
found = False
union_list = best_models_prev_folds + best_model_paths
for best_model_prefix in union_list:
if mf.startswith(best_model_prefix.split('/')[-1]):
found = True
if not found:
os.remove(os.path.join(models_dir, mf))
return best_model_paths
def get_batches(x, y, batch_size):
x_batch = []
y_batch = []
for i in range(len(x)):
x_batch.append(x[i])
y_batch.append(y[i])
if len(x_batch) == batch_size:
yield np.array(x_batch), np.array(y_batch)
x_batch = []
y_batch = []
if len(x_batch) > 0:
yield np.array(x_batch), np.array(y_batch)
def train_model(x, y, seed, learning_rate, output_models_folder, fold, n_epochs=200, batch_size=16):
valid_indices = np.random.choice([i for i in range(0, len(x))], int(len(x) * 0.1), replace=False)
x_vali = np.array(x)[valid_indices]
y_vali = np.array(y)[valid_indices]
x = np.array([x[i] for i in range(len(x)) if i not in valid_indices])
y = np.array([y[i] for i in range(len(y)) if i not in valid_indices])
measures = []
model_paths = []
prev_MAE = np.inf
max_patience = 20
patience = 10
tf.set_random_seed(0)
tf.reset_default_graph()
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config, graph=tf.get_default_graph()) as sess:
tf.set_random_seed(seed)
model = ProbRegressor(seed, x.shape[-1], learning_rate)
sess.run(model.init_op)
tf.set_random_seed(0)
for epoch in range(n_epochs):
for (data_batch, labels_batch) in get_batches(x, y, batch_size):
_, step, loss, preds = sess.run([model.train_op, model.global_step, model.loss, model.output],
feed_dict={model.input_data: data_batch, model.labels: labels_batch})
# mae = float(np.mean(np.abs(preds - y)))
preds_vali, loss_vali = sess.run([model.output, model.loss],
feed_dict={model.input_data: x_vali, model.labels: y_vali})
# mae_vali = float(np.mean(np.abs(preds_vali - y_vali)))
# measures.append(mae_vali)
measures.append(loss_vali)
if loss_vali >= prev_MAE:
patience -= 1
prev_MAE = loss_vali
if patience == 0:
print('Stopping early')
break
else:
patience = max_patience
prev_MAE = loss_vali
if epoch % 10 == 0:
print('epoch: %d, step: %d, loss: %2.4f, loss valid: %2.8f' % (epoch, step, loss, loss_vali))
model_name = str(uuid.uuid4())
model_save_path = os.path.join(output_models_folder, model_name + '_fold=' + fold + '_' + str(step))
model_paths.append(model_save_path)
model.saver.save(sess, save_path=model_save_path)
best_model_path = model_paths[np.argmin(measures)]
print('best model path on fold {}: {}'.format(fold, best_model_path))
# return model_save_path
return best_model_path
def compute_training_distributions(retrieved_doc_scores_by_query, rdbq, qnames, collection):
x = []
y = []
for qname in tqdm(qnames):
if qname not in rdbq.keys() or qname not in retrieved_doc_scores_by_query.keys():
continue
dist, n_rel_ret_d = new_q_dist(qname, rdbq, retrieved_doc_scores_by_query)
y.append(n_rel_ret_d)
x.append(dist)
return np.array(x), np.array(y)
def plot_scores_dist(dist, n_rel, relevance_labels):
import matplotlib.pyplot as plt
plt.plot(dist)
# plt.axvline(n_rel, 0, 1, label='pyplot vertical line', color='r')
markers_on = [i for i in range(len(relevance_labels)) if relevance_labels[i] > 0]
plt.plot(dist, '-bD', markevery=markers_on)
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
plt.xlabel('Position', fontsize=18)
plt.ylabel('Normalized relevance score', fontsize=18)
plt.show()
# plt.ylabel('some numbers')
plt.show()
def new_q_dist(qname, rdbq, retrieved_doc_scores_by_query, n_top=100):
# print('ntop: {}'.format(n_top))
doc_scores_bn = retrieved_doc_scores_by_query[qname]
pred = np.array([doc_scores_bn[dn] for dn in doc_scores_bn.keys()])
top_ranked_d = get_top_k_doc_names(doc_scores_bn, n_top)
if qname not in rdbq.keys():
num_rel_retr_docs = 0
else:
num_rel_retr_docs = sum([1 for dn in top_ranked_d if dn in rdbq[qname]])
rel_labels = [1 if dn in rdbq[qname] else 0 for dn in top_ranked_d if dn in rdbq[qname]]
doc_scores = pred[np.argsort(-pred)][0:min(len(pred), n_top)]
# doc_scores = doc_scores / sum(doc_scores)
doc_scores = list(doc_scores) + [0] * max(0, n_top - len(doc_scores))
# plot_scores_dist(doc_scores, num_rel_retr_docs, rel_labels)
return np.array(doc_scores), num_rel_retr_docs / len(doc_scores)
def get_top_k_doc_names(doc_scores_bn, nelements):
dnames = []
dscores = []
for k, v in doc_scores_bn.items():
dnames.append(k)
dscores.append(v)
dnames = np.array(dnames)
dscores = np.array(dscores)
return dnames[np.argsort(-dscores)][0:nelements]
def pred_w_prob_reg_model_batch(model_path, x_test, learning_rate):
n_samples = 50
tf.set_random_seed(0)
tf.reset_default_graph()
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config, graph=tf.get_default_graph()) as sess:
tf.set_random_seed(0)
model = ProbRegressor(0, np.array(x_test).shape[-1], learning_rate)
sess.run(model.init_op)
tf.set_random_seed(0)
model.saver.restore(sess, model_path)
# Make predictions.
preds = np.mean(
[sess.run(tf.squeeze(model.output), feed_dict={model.input_data: x_test}) for _ in range(n_samples)],
axis=0)
assert len(preds) == len(x_test)
# sampled_prediction = [model.predict(np.array(x_test)) for i in range(n_samples)]
return preds