-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnoise_adder.py
99 lines (78 loc) · 3.33 KB
/
noise_adder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import numpy as np
import pretty_midi
import librosa
import soundfile as sf
import colorednoise
def midi_to_audio(midi_file):
"""Convert MIDI to audio using pretty_midi."""
pm = pretty_midi.PrettyMIDI(midi_file)
audio = pm.synthesize(fs=44100)
return audio, 44100
def calculate_power(signal):
"""Calculate the power of a signal."""
return np.mean(signal ** 2)
def add_noise_with_snr(signal, desired_snr_db):
"""
Add noise to signal based on desired Signal-to-Noise Ratio (SNR) in dB.
A lower SNR means more noise and more distortion.
"""
# Calculate signal power
signal_power = calculate_power(signal)
# Generate pink noise (exponent=1 for pink noise)
noise = colorednoise.powerlaw_psd_gaussian(exponent=1.0, size=len(signal))
# Calculate desired noise power based on SNR
desired_noise_power = signal_power / (10 ** (desired_snr_db / 10))
# Scale noise to achieve desired SNR
current_noise_power = calculate_power(noise)
scaling_factor = np.sqrt(desired_noise_power / current_noise_power)
scaled_noise = noise * scaling_factor
# Add noise to signal
noisy_signal = signal + scaled_noise
# Normalize to prevent clipping
max_val = max(abs(noisy_signal))
if max_val > 1:
noisy_signal = noisy_signal / max_val
return noisy_signal
def process_midi_files(data_dir, output_dir, noise_levels):
"""Process all MIDI files in the dataset."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Convert noise percentages to SNR values
# Higher noise % = Lower SNR
# 100% noise → SNR = -20 dB (very noisy)
# 0% noise → SNR = 40 dB (very clean)
max_snr = 40 # dB
min_snr = -20 # dB
midi_files = []
for root, _, files in os.walk(data_dir):
for file in files:
if file.lower().endswith(('.mid', '.midi')):
midi_files.append(os.path.join(root, file))
print(f"Found {len(midi_files)} MIDI files.")
for midi_file in midi_files:
try:
print(f"Processing: {midi_file}")
base_name = os.path.splitext(os.path.basename(midi_file))[0]
# Generate audio from MIDI
y, sr = midi_to_audio(midi_file)
# Create noisy versions
for noise_percent in noise_levels:
# Convert noise percentage to SNR
# As noise_percent increases, SNR decreases
snr_db = max_snr - (noise_percent/100) * (max_snr - min_snr)
# Add noise based on SNR
y_noisy = add_noise_with_snr(y, snr_db)
# Save file
output_file = f"{base_name}_noise_{int(noise_percent)}percent.wav"
output_path = os.path.join(output_dir, output_file)
sf.write(output_path, y_noisy, sr)
print(f"Saved: {output_path} (SNR: {snr_db:.1f} dB)")
except Exception as e:
print(f"Error processing {midi_file}: {e}")
# Main execution
if __name__ == "__main__":
data_directory = 'EMOPIA_1.0/midis'
output_directory = 'EMOPIA_1.0_noisy'
noise_levels = np.arange(10, 110, 10) # 10% to 100% noise levels
process_midi_files(data_directory, output_directory, noise_levels)