-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
341 lines (278 loc) · 9.88 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os
import json
import base64
import numpy as np
from collections import namedtuple
import tensorflow as tf
import tensorflowjs as tfjs
import tensorflowjs.converters.common as tfjs_common
from tensorflowjs.read_weights import read_weights
from google.protobuf.json_format import ParseDict, MessageToDict
TFJS_NODE_KEY = 'node'
TFJS_NODE_ATTR_KEY = 'attr'
TFJS_NODE_CONST_KEY = 'Const'
TFJS_NODE_PLACEHOLDER_KEY = 'Placeholder'
TFJS_ATTR_DTYPE_KEY = 'dtype'
TFJS_ATTR_SHAPE_KEY = 'shape'
TFJS_ATTR_VALUE_KEY = 'value'
TFJS_ATTR_STRING_VALUE_KEY = 's'
TFJS_ATTR_INT_VALUE_KEY = 'i'
TFJS_NAME_KEY = 'name'
TFJS_DATA_KEY = 'data'
def _parse_path_and_model_json(model_dir):
"""
Parse model directory name and return path and file name
Args:
model_dir: Model file path - either directory name or path + file name
Returns:
Tuple of directory name and model file name (without directory)
"""
if model_dir.endswith('.json'):
if not os.path.isfile(model_dir):
raise ValueError("Model not found: {}".format(model_dir))
return os.path.split(model_dir)
elif os.path.isdir(model_dir):
return model_dir, tfjs_common.ARTIFACT_MODEL_JSON_FILE_NAME
else:
raise ValueError("Model path is not a directory: {}".format(model_dir))
def _find_if_has_key(obj, key, of_type=None):
"""
Recursively find all objects with a given key in a dictionary
Args:
obj: Dictionary to search
key: Key to find
of_type: [optional] Type of the referenced item
Returns:
List of all objects that contain an item with the given key and matching type
"""
def children(item): return [
val for val in item.values() if isinstance(val, dict)]
found = []
stack = children(obj)
while len(stack) > 0:
item = stack.pop()
if key in item and (of_type is None or isinstance(item[key], of_type)):
found.append(item)
stack.extend(children(item))
return found
def _convert_string_attrs(node):
"""
Deep search string attributes (labelled "s" in GraphDef proto)
and convert ascii code lists to base64-encoded strings if necessary
"""
attr_key = TFJS_NODE_ATTR_KEY
str_key = TFJS_ATTR_STRING_VALUE_KEY
attrs = _find_if_has_key(node[attr_key], key=str_key, of_type=list)
for attr in attrs:
array = attr[str_key]
# check if conversion is actually necessary
if len(array) > 0 and isinstance(array, list) and isinstance(array[0], int):
string = ''.join(map(chr, array))
binary = string.encode('utf8')
attr[str_key] = base64.encodebytes(binary)
elif len(array) == 0:
attr[str_key] = None
return
def _fix_dilation_attrs(node):
"""
Search dilations-attribute and convert
misaligned dilation rates if necessary see
https://github.com/patlevin/tfjs-to-tf/issues/1
"""
path = ['attr', 'dilations', 'list']
values = node
for key in path:
if key in values:
values = values[key]
else:
values = None
break
# if dilations are present, they're stored in 'values' now
ints = TFJS_ATTR_INT_VALUE_KEY
if values is not None and ints in values and isinstance(values[ints], list):
v = values[ints]
if len(v) is not 4:
# must be NCHW-formatted 4D tensor or else TF can't handle it
raise ValueError(
"Unsupported 'dilations'-attribute in node {}".format(node[
TFJS_NAME_KEY]))
# check for [>1,>1,1,1], which is likely a mistranslated [1,>1,>1,1]
if int(v[0], 10) > 1:
values[ints] = ['1', v[0], v[1], '1']
return
def _convert_attr_values(message_dict):
"""
Node attributes in deserialised JSON contain strings as lists of ascii codes.
The TF GraphDef proto expects these values to be base64 encoded so convert all
strings here.
"""
if TFJS_NODE_KEY in message_dict:
nodes = message_dict[TFJS_NODE_KEY]
for node in nodes:
_convert_string_attrs(node)
_fix_dilation_attrs(node)
return message_dict
def _convert_graph_def(message_dict):
"""
Convert JSON to TF GraphDef message
Args:
message_dict: deserialised JSON message
Returns:
TF GraphDef message
"""
message_dict = _convert_attr_values(message_dict)
return ParseDict(message_dict, tf.compat.v1.GraphDef())
def _convert_weight_list_to_dict(weight_list):
"""
Convert list of weight entries to dictionary
Args:
weight_list: List of numpy arrays or tensors formatted as
{'name': 'entry0', 'data': np.array([1,2,3], 'float32')}
Returns:
Dictionary that maps weight names to tensor data, e.g.
{'entry0:': np.array(...), 'entry1': np.array(...), ...}
"""
weight_dict = {}
for entry in weight_list:
weight_dict[entry[TFJS_NAME_KEY]] = entry[TFJS_DATA_KEY]
return weight_dict
def _create_graph(graph_def, weight_dict):
"""
Create a TF Graph from nodes
Args:
graph_def: TF GraphDef message containing the node graph
weight_dict: Dictionary from node names to tensor data
Returns:
TF Graph for inference or saving
"""
graph = tf.Graph()
with tf.compat.v1.Session(graph=graph):
for k, v in weight_dict.items():
weight_dict[k] = tf.convert_to_tensor(v)
tf.graph_util.import_graph_def(graph_def, weight_dict, name='')
return graph
def _convert_graph_model_to_graph(model_json, base_path):
"""
Convert TFJS JSON model to TF Graph
Args:
model_json: JSON dict from TFJS model file
base_path: Path to the model file (where to find the model weights)
Returns:
TF Graph for inference or saving
"""
if not tfjs_common.ARTIFACT_MODEL_TOPOLOGY_KEY in model_json:
raise ValueError("model_json is missing key '{}'".format(
tfjs_common.ARTIFACT_MODEL_TOPOLOGY_KEY))
topology = model_json[tfjs_common.ARTIFACT_MODEL_TOPOLOGY_KEY]
if not tfjs_common.ARTIFACT_WEIGHTS_MANIFEST_KEY in model_json:
raise ValueError("model_json is missing key '{}'".format(
tfjs_common.ARTIFACT_WEIGHTS_MANIFEST_KEY))
weights_manifest = model_json[tfjs_common.ARTIFACT_WEIGHTS_MANIFEST_KEY]
weight_list = read_weights(weights_manifest, base_path, flatten=True)
graph_def = _convert_graph_def(topology)
weight_dict = _convert_weight_list_to_dict(weight_list)
return _create_graph(graph_def, weight_dict)
def load_graph_model(model_dir):
"""
Load a TFJS Graph Model from a directory
Args:
model_dir: Directory that contains the tfjs model.json and weights;
alternatively name and path of the model.json if the name
differs from the default ("model.json")
Returns:
TF frozen graph for inference or saving
"""
model_path, model_name = _parse_path_and_model_json(model_dir)
model_file_path = os.path.join(model_path, model_name)
with open(model_file_path, "r") as f:
model_json = json.load(f)
return _convert_graph_model_to_graph(model_json, model_path)
_DTYPE_MAP = [
None,
np.float32,
np.float64,
np.int32,
np.uint8,
np.int16,
np.int8,
None,
np.complex64,
np.int64,
np.bool
]
NodeInfo = namedtuple('NodeInfo', 'name shape dtype tensor')
def _is_op_node(node):
return node.op not in (TFJS_NODE_CONST_KEY, TFJS_NODE_PLACEHOLDER_KEY)
def _op_nodes(graph_def):
return [node for node in graph_def.node if _is_op_node(node)]
def _map_type(type_id):
if type_id < 0 or type_id > len(_DTYPE_MAP):
raise ValueError("Unsupported data type: {}".format(type_id))
np_type = _DTYPE_MAP[type_id]
return np_type
def _get_shape(node):
def shape(attr): return attr.shape.dim
def size(dim): return dim.size if dim.size > 0 else None
return [size(dim) for dim in shape(node.attr[TFJS_ATTR_SHAPE_KEY])]
def _node_info(node):
def dtype(n): return _map_type(n.attr[TFJS_ATTR_DTYPE_KEY].type)
return NodeInfo(name=node.name, shape=_get_shape(node), dtype=dtype(node),
tensor=node.name + ':0')
def get_input_nodes(graph):
"""
Return information about a graph's inputs.
Arguments:
graph: Graph or GraphDef object
Returns:
List of NodeInfo objects holding name, shape, and type of the input
"""
if isinstance(graph, tf.Graph):
graph_def = graph.as_graph_def()
else:
graph_def = graph
nodes = [n for n in graph_def.node if n.op in (
TFJS_NODE_PLACEHOLDER_KEY)]
return [_node_info(node) for node in nodes]
def get_output_nodes(graph):
"""
Return information about a graph's outputs.
Arguments:
graph: Graph or GraphDef object
Returns:
List of NodeInfo objects holding name, shape, and type of the input;
shape will be left empty
"""
if isinstance(graph, tf.Graph):
graph_def = graph.as_graph_def()
else:
graph_def = graph
ops = _op_nodes(graph_def)
outputs = []
for i in range(0, len(ops)):
node = ops[i]
has_ref = False
for test in ops[i+1:]:
if node.name in test.input:
has_ref = True
break
if not has_ref:
outputs.append(node)
return [_node_info(node) for node in outputs]
def get_input_tensors(graph):
"""
Return the names of the graph's input tensors.
Arguments:
graph: Graph or GraphDef object
Returns:
List of tensor names
"""
return [node.tensor for node in get_input_nodes(graph)]
def get_output_tensors(graph):
"""
Return the names of the graph's output tensors.
Arguments:
graph: Graph or GraphDef object
Returns:
List of tensor names
"""
return [node.tensor for node in get_output_nodes(graph)]