-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata.py
766 lines (689 loc) · 29.1 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
'''
Created on 22 Jan 2017
@author: af
'''
import networkx as nx
import numpy as np
import pdb
import gzip
import csv
import pandas as pd
import os
import re
import logging
from sklearn.feature_extraction.text import TfidfVectorizer
from collections import defaultdict as dd, OrderedDict
from haversine import haversine
import sys
from sklearn.neighbors import NearestNeighbors
from matplotlib.collections import PatchCollection
#from networkx.algorithms.bipartite.projection import weighted_projected_graph
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
def projected_graph(B, nodes, multigraph=False):
if B.is_multigraph():
raise nx.NetworkXError("not defined for multigraphs")
if B.is_directed():
directed=True
if multigraph:
G=nx.MultiDiGraph()
else:
G=nx.DiGraph()
else:
directed=False
if multigraph:
G=nx.MultiGraph()
else:
G=nx.Graph()
G.graph.update(B.graph)
G.add_nodes_from((n,B.node[n]) for n in nodes)
i = 0
nodes = set(nodes)
tenpercent = len(nodes) / 10
for u in nodes:
if i % tenpercent == 0:
logging.info(str(10 * i / tenpercent) + "%")
i += 1
nbrs2=set((v for nbr in B[u] for v in B[nbr])) & nodes - set([u])
if multigraph:
for n in nbrs2:
if directed:
links=set(B[u]) & set(B.pred[n])
else:
links=set(B[u]) & set(B[n])
for l in links:
if not G.has_edge(u,n,l):
G.add_edge(u,n,key=l)
else:
G.add_edges_from((u,n) for n in nbrs2)
return G
def efficient_projected_graph(B, nodes):
g = nx.Graph()
nodes = set(nodes)
g.add_nodes_from(nodes)
b_nodes = set(B.nodes())
i = 0
nodes = set(nodes)
tenpercent = len(b_nodes) / 10
for n in b_nodes:
if i % tenpercent == 0:
logging.info(str(10 * i / tenpercent) + "%")
i += 1
nbrs = list(set([nbr for nbr in B[n]]) & nodes - set([n]))
if n in nodes:
for nbr in nbrs:
if not g.has_edge(n, nbr):
g.add_edge(n, nbr)
for nbr1 in nbrs:
for nbr2 in nbrs:
if nbr1 < nbr2:
if not g.has_edge(nbr1, nbr2):
g.add_edge(nbr1, nbr2)
del nbrs
return g
def collaboration_weighted_projected_graph(B, nodes):
if B.is_multigraph():
raise nx.NetworkXError("not defined for multigraphs")
if B.is_directed():
pred=B.pred
G=nx.DiGraph()
else:
pred=B.adj
G=nx.Graph()
G.graph.update(B.graph)
G.add_nodes_from((n,B.node[n]) for n in nodes)
i = 0
nodes = set(nodes)
tenpercent = len(nodes) / 10
for u in nodes:
if i % tenpercent == 0:
logging.info(str(10 * i / tenpercent) + "%")
i += 1
unbrs = set(B[u])
nbrs2 = set((n for nbr in unbrs for n in B[nbr])) & nodes - set([u])
for v in nbrs2:
vnbrs = set(pred[v])
common = unbrs & vnbrs
weight = sum([1.0/(len(B[n]) - 1) for n in common if len(B[n])>1])
G.add_edge(u,v,w=weight)
return G
def efficient_collaboration_weighted_projected_graph(B, nodes):
r"""Newman's weighted projection of B onto one of its node sets.
The collaboration weighted projection is the projection of the
bipartite network B onto the specified nodes with weights assigned
using Newman's collaboration model [1]_:
.. math::
w_{v,u} = \sum_k \frac{\delta_{v}^{w} \delta_{w}^{k}}{k_w - 1}
where `v` and `u` are nodes from the same bipartite node set,
and `w` is a node of the opposite node set.
The value `k_w` is the degree of node `w` in the bipartite
network and `\delta_{v}^{w}` is 1 if node `v` is
linked to node `w` in the original bipartite graph or 0 otherwise.
The nodes retain their attributes and are connected in the resulting
graph if have an edge to a common node in the original bipartite
graph.
Parameters
----------
B : NetworkX graph
The input graph should be bipartite.
nodes : list or iterable
Nodes to project onto (the "bottom" nodes).
Returns
-------
Graph : NetworkX graph
A graph that is the projection onto the given nodes.
Examples
--------
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> B.add_edge(1,5)
>>> G = bipartite.collaboration_weighted_projected_graph(B, [0, 2, 4, 5])
>>> print(G.nodes())
[0, 2, 4, 5]
>>> for edge in G.edges(data=True): print(edge)
...
(0, 2, {'weight': 0.5})
(0, 5, {'weight': 0.5})
(2, 4, {'weight': 1.0})
(2, 5, {'weight': 0.5})
Notes
------
No attempt is made to verify that the input graph B is bipartite.
The graph and node properties are (shallow) copied to the projected graph.
See Also
--------
is_bipartite,
is_bipartite_node_set,
sets,
weighted_projected_graph,
overlap_weighted_projected_graph,
generic_weighted_projected_graph,
projected_graph
References
----------
.. [1] Scientific collaboration networks: II.
Shortest paths, weighted networks, and centrality,
M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
"""
nodes = set(nodes)
G = nx.Graph()
G.add_nodes_from(nodes)
all_nodes = set(B.nodes())
i = 0
tenpercent = len(all_nodes) / 10
for m in all_nodes:
if i % tenpercent == 0:
logging.info(str(10 * i / tenpercent) + "%")
i += 1
nbrs = B[m]
target_nbrs = [t for t in nbrs if t in nodes]
#if len(nbrs) < 2:
# continue
if m in nodes:
for n in target_nbrs:
if m < n:
n_nbrs = len(B[n])
if n_nbrs > 1:
w_n = 1.0 / (n_nbrs - 1)
else:
w_n = 0
w = 1.0 / (len(nbrs) - 1) + w_n
if G.has_edge(m, n):
G[m][n]['w'] += w
else:
G.add_edge(m, n, w=w)
for n1 in target_nbrs:
for n2 in target_nbrs:
if n1 < n2:
w = 1.0 / (len(nbrs) - 1)
if G.has_edge(n1, n2):
G[n1][n2]['w'] += w
else:
G.add_edge(n1, n2, w=w)
return G
def efficient_collaboration_weighted_projected_graph2(B, nodes):
nodes = set(nodes)
G = nx.Graph()
G.add_nodes_from(nodes)
all_nodes = set(B.nodes())
i = 0
tenpercent = len(all_nodes) / 10
for m in all_nodes:
if i % tenpercent == 0:
logging.info(str(10 * i / tenpercent) + "%")
i += 1
nbrs = B[m]
target_nbrs = [t for t in nbrs if t in nodes]
if m in nodes:
for n in target_nbrs:
if m < n:
if not G.has_edge(m, n):
G.add_edge(m, n)
for n1 in target_nbrs:
for n2 in target_nbrs:
if n1 < n2:
if not G.has_edge(n1, n2):
G.add_edge(n1, n2)
return G
class DataLoader():
def __init__(self, data_home, bucket_size=50, encoding='utf-8',
celebrity_threshold=10, one_hot_labels=False, mindf=10, maxdf=0.2,
norm='l2', idf=True, btf=True, tokenizer=None, subtf=False, stops=None,
token_pattern=r'(?u)(?<![#@])\b\w\w+\b', vocab=None):
self.data_home = data_home
self.bucket_size = bucket_size
self.encoding = encoding
self.celebrity_threshold = celebrity_threshold
self.one_hot_labels = one_hot_labels
self.mindf = mindf
self.maxdf = maxdf
self.norm = norm
self.idf = idf
self.btf = btf
self.tokenizer = tokenizer
self.subtf = subtf
self.stops = stops if stops else 'english'
self.token_pattern = token_pattern
self.vocab = vocab
def load_data(self):
logging.info('loading the dataset from %s' %self.data_home)
train_file = os.path.join(self.data_home, 'user_info.train.gz')
dev_file = os.path.join(self.data_home, 'user_info.dev.gz')
test_file = os.path.join(self.data_home, 'user_info.test.gz')
df_train = pd.read_csv(train_file, delimiter='\t', encoding=self.encoding, names=['user', 'lat', 'lon', 'text'], quoting=csv.QUOTE_NONE, error_bad_lines=False)
df_dev = pd.read_csv(dev_file, delimiter='\t', encoding=self.encoding, names=['user', 'lat', 'lon', 'text'], quoting=csv.QUOTE_NONE, error_bad_lines=False)
df_test = pd.read_csv(test_file, delimiter='\t', encoding=self.encoding, names=['user', 'lat', 'lon', 'text'], quoting=csv.QUOTE_NONE, error_bad_lines=False)
df_train.dropna(inplace=True)
df_dev.dropna(inplace=True)
df_test.dropna(inplace=True)
df_train['user'] = df_train['user'].apply(lambda x: str(x).lower())
df_train.drop_duplicates(['user'], inplace=True, keep='last')
df_train.set_index(['user'], drop=True, append=False, inplace=True)
df_train.sort_index(inplace=True)
df_dev['user'] = df_dev['user'].apply(lambda x: str(x).lower())
df_dev.drop_duplicates(['user'], inplace=True, keep='last')
df_dev.set_index(['user'], drop=True, append=False, inplace=True)
df_dev.sort_index(inplace=True)
df_test['user'] = df_test['user'].apply(lambda x: str(x).lower())
df_test.drop_duplicates(['user'], inplace=True, keep='last')
df_test.set_index(['user'], drop=True, append=False, inplace=True)
df_test.sort_index(inplace=True)
self.df_train = df_train
self.df_dev = df_dev
self.df_test = df_test
def get_graph(self):
g = nx.Graph()
nodes = set(self.df_train.index.tolist() + self.df_dev.index.tolist() + self.df_test.index.tolist())
assert len(nodes) == len(self.df_train) + len(self.df_dev) + len(self.df_test), 'duplicate target node'
nodes_list = self.df_train.index.tolist() + self.df_dev.index.tolist() + self.df_test.index.tolist()
node_id = {node:id for id, node in enumerate(nodes_list)}
g.add_nodes_from(node_id.values())
for node in nodes:
g.add_edge(node_id[node], node_id[node])
pattern = '(?<=^|(?<=[^a-zA-Z0-9-_\\.]))@([A-Za-z]+[A-Za-z0-9_]+)'
pattern = re.compile(pattern)
logging.info('adding the train graph')
for i in range(len(self.df_train)):
user = self.df_train.index[i]
user_id = node_id[user]
mentions = [m.lower() for m in pattern.findall(self.df_train.text[i])]
idmentions = set()
for m in mentions:
if m in node_id:
idmentions.add(node_id[m])
else:
id = len(node_id)
node_id[m] = id
idmentions.add(id)
if len(idmentions) > 0:
g.add_nodes_from(idmentions)
for id in idmentions:
g.add_edge(id, user_id)
logging.info('adding the dev graph')
for i in range(len(self.df_dev)):
user = self.df_dev.index[i]
user_id = node_id[user]
mentions = [m.lower() for m in pattern.findall(self.df_dev.text[i])]
idmentions = set()
for m in mentions:
if m in node_id:
idmentions.add(node_id[m])
else:
id = len(node_id)
node_id[m] = id
idmentions.add(id)
if len(idmentions) > 0:
g.add_nodes_from(idmentions)
for id in idmentions:
g.add_edge(id, user_id)
logging.info('adding the test graph')
for i in range(len(self.df_test)):
user = self.df_test.index[i]
user_id = node_id[user]
mentions = [m.lower() for m in pattern.findall(self.df_test.text[i])]
idmentions = set()
for m in mentions:
if m in node_id:
idmentions.add(node_id[m])
else:
id = len(node_id)
node_id[m] = id
idmentions.add(id)
if len(idmentions) > 0:
g.add_nodes_from(idmentions)
for id in idmentions:
g.add_edge(id, user_id)
celebrities = []
for i in xrange(len(nodes_list), len(node_id)):
deg = len(g[i])
if deg == 1 or deg > self.celebrity_threshold:
celebrities.append(i)
logging.info('removing %d celebrity nodes with degree higher than %d' % (len(celebrities), self.celebrity_threshold))
g.remove_nodes_from(celebrities)
logging.info('projecting the graph')
g = efficient_collaboration_weighted_projected_graph2(g, range(len(nodes_list)))
logging.info('#nodes: %d, #edges: %d' %(nx.number_of_nodes(g), nx.number_of_edges(g)))
self.graph = g
def tfidf(self):
#keep both hashtags and mentions
#token_pattern=r'(?u)@?#?\b\w\w+\b'
#remove hashtags and mentions
#token_pattern = r'(?u)(?<![#@])\b\w+\b'
#just remove mentions and remove hashsign from hashtags
#token_pattern = r'(?u)(?<![@])\b\w+\b'
#remove mentions but keep hashtags with their sign
#token_pattern = r'(?u)(?<![@])#?\b\w\w+\b'
#remove multple occurrences of a character after 2 times yesss => yess
#re.sub(r"(.)\1+", r"\1\1", s)
self.vectorizer = TfidfVectorizer(tokenizer=self.tokenizer, token_pattern=self.token_pattern, use_idf=self.idf,
norm=self.norm, binary=self.btf, sublinear_tf=self.subtf,
min_df=self.mindf, max_df=self.maxdf, ngram_range=(1, 1), stop_words=self.stops,
vocabulary=self.vocab, encoding=self.encoding, dtype='float32')
logging.info(self.vectorizer)
self.X_train = self.vectorizer.fit_transform(self.df_train.text.values)
self.X_dev = self.vectorizer.transform(self.df_dev.text.values)
self.X_test = self.vectorizer.transform(self.df_test.text.values)
logging.info("training n_samples: %d, n_features: %d" % self.X_train.shape)
logging.info("development n_samples: %d, n_features: %d" % self.X_dev.shape)
logging.info("test n_samples: %d, n_features: %d" % self.X_test.shape)
def assignClasses(self):
clusterer = kdtree.KDTreeClustering(bucket_size=self.bucket_size)
train_locs = self.df_train[['lat', 'lon']].values
clusterer.fit(train_locs)
clusters = clusterer.get_clusters()
cluster_points = dd(list)
for i, cluster in enumerate(clusters):
cluster_points[cluster].append(train_locs[i])
logging.info('#labels: %d' %len(cluster_points))
self.cluster_median = OrderedDict()
for cluster in sorted(cluster_points):
points = cluster_points[cluster]
median_lat = np.median([p[0] for p in points])
median_lon = np.median([p[1] for p in points])
self.cluster_median[cluster] = (median_lat, median_lon)
dev_locs = self.df_dev[['lat', 'lon']].values
test_locs = self.df_test[['lat', 'lon']].values
nnbr = NearestNeighbors(n_neighbors=1, algorithm='brute', leaf_size=1, metric=haversine, n_jobs=4)
nnbr.fit(np.array(self.cluster_median.values()))
self.dev_classes = nnbr.kneighbors(dev_locs, n_neighbors=1, return_distance=False)[:, 0]
self.test_classes = nnbr.kneighbors(test_locs, n_neighbors=1, return_distance=False)[:, 0]
self.train_classes = clusters
if self.one_hot_labels:
num_labels = np.max(self.train_classes) + 1
y_train = np.zeros((len(self.train_classes), num_labels), dtype=np.float32)
y_train[np.arange(len(self.train_classes)), self.train_classes] = 1
y_dev = np.zeros((len(self.dev_classes), num_labels), dtype=np.float32)
y_dev[np.arange(len(self.dev_classes)), self.dev_classes] = 1
y_test = np.zeros((len(self.test_classes), num_labels), dtype=np.float32)
y_test[np.arange(len(self.test_classes)), self.test_classes] = 1
self.train_classes = y_train
self.dev_classes = y_dev
self.test_classes = y_test
def draw_kd_clusters2(self, filename, figsize=(4,3)):
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap, cm, maskoceans
class KDTree:
"""Simple KD tree class"""
# class initialization function
def __init__(self, data, mins, maxs):
self.data = np.asarray(data)
# data should be two-dimensional
assert self.data.shape[1] == 2
if mins is None:
mins = data.min(0)
if maxs is None:
maxs = data.max(0)
self.mins = np.asarray(mins)
self.maxs = np.asarray(maxs)
self.sizes = self.maxs - self.mins
self.child1 = None
self.child2 = None
if len(data) > 1:
# sort on the dimension with the largest spread
largest_dim = np.argmax(self.sizes)
i_sort = np.argsort(self.data[:, largest_dim])
self.data[:] = self.data[i_sort, :]
# find split point
N = self.data.shape[0]
split_point = 0.5 * (self.data[N / 2, largest_dim]
+ self.data[N / 2 - 1, largest_dim])
# create subnodes
mins1 = self.mins.copy()
mins1[largest_dim] = split_point
maxs2 = self.maxs.copy()
maxs2[largest_dim] = split_point
# Recursively build a KD-tree on each sub-node
self.child1 = KDTree(self.data[N / 2:], mins1, self.maxs)
self.child2 = KDTree(self.data[:N / 2], self.mins, maxs2)
def draw_rectangle(self, ax, depth=None):
"""Recursively plot a visualization of the KD tree region"""
if depth == 0:
rect = plt.Rectangle(self.mins, *self.sizes, ec='k', fc='none', lw=0.7)
ax.add_patch(rect)
if self.child1 is not None:
if depth is None:
self.child1.draw_rectangle(ax)
self.child2.draw_rectangle(ax)
elif depth > 0:
self.child1.draw_rectangle(ax, depth - 1)
self.child2.draw_rectangle(ax, depth - 1)
#------------------------------------------------------------
# Create a set of structured random points in two dimensions
np.random.seed(0)
lllat = 24.396308
lllon = -124.848974
urlat = 49.384358
urlon = -66.885444
fig = plt.figure(figsize=figsize)
m = Basemap(llcrnrlat=lllat,
urcrnrlat=urlat,
llcrnrlon=lllon,
urcrnrlon=urlon,
resolution='c', projection='cyl')
m.drawmapboundary(fill_color = 'white')
m.drawcoastlines(linewidth=0.4)
m.drawcountries(linewidth=0.4)
train_locs = self.df_train[['lon', 'lat']].values
mlon, mlat = m(*(train_locs[:,1], train_locs[:,0]))
train_locs = np.transpose(np.vstack((mlat, mlon)))
ax = plt.gca()
#fig = plt.figure() # figsize=(4,4.2)
print fig.get_size_inches()
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
#------------------------------------------------------------
# Use our KD Tree class to recursively divide the space
KDT = KDTree(train_locs, [lllon-1, urlon+1], [lllat-1, urlat+1])
#------------------------------------------------------------
# Plot four different levels of the KD tree
fig = plt.figure(figsize=figsize)
'''
fig.subplots_adjust(wspace=0.1, hspace=0.15,
left=0.1, right=0.9,
bottom=0.05, top=0.9)
'''
level = 8
ax = plt.gca()
#ax.scatter(X[:, 0], X[:, 1], s=9)
KDT.draw_rectangle(ax, depth=level - 1)
ax.set_xlim([-125, -60]) # pylab.xlim([-400, 400])
ax.set_ylim([25, 50])
plt.setp(ax.get_yticklabels(), visible=False)
plt.setp(ax.get_xticklabels(), visible=False)
ax.yaxis.set_tick_params(size=0)
ax.xaxis.set_tick_params(size=0)
#plt.tick_params(axis='both', which='major', labelsize=25)
#ax.labelsize = '25'
#plt.subplots_adjust(bottom=0.2)
m.drawlsmask(land_color='lightgray',ocean_color="#b0c4de", lakes=True)
plt.tight_layout()
plt.savefig(filename)
def draw_kd_clusters(self, filename, figsize=(4,3)):
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap, cm, maskoceans
#from matplotlib import style
#import seaborn as sns
#sns.set_style("white")
#plt.rc('text', usetex=True)
#plt.rc('font', family='serif')
#plt.rcParams['axes.facecolor']='white'
fig = plt.figure(figsize=figsize)
lllat = 24.396308
lllon = -124.848974
urlat = 49.384358
urlon = -66.885444
m = Basemap(llcrnrlat=lllat,
urcrnrlat=urlat,
llcrnrlon=lllon,
urcrnrlon=urlon,
resolution='c', projection='cyl')
m.drawmapboundary(fill_color = 'white')
m.drawcoastlines(linewidth=0.2)
m.drawcountries(linewidth=0.2)
ax = plt.gca()
#fig = plt.figure() # figsize=(4,4.2)
print fig.get_size_inches()
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
clusterer = kdtree.KDTreeClustering(bucket_size=self.bucket_size)
train_locs = self.df_train[['lat', 'lon']].values
mlon, mlat = m(*(train_locs[:,1], train_locs[:,0]))
train_locs = np.transpose(np.vstack((mlat, mlon)))
clusterer.fit(train_locs)
clusters = clusterer.get_clusters()
cluster_points = dd(list)
for i, cluster in enumerate(clusters):
cluster_points[cluster].append(train_locs[i])
corners = []
for i in clusters:
points = np.vstack(cluster_points[i])
min_lat, min_lon = points.min(axis=0)
max_lat, max_lon = points.max(axis=0)
min_lon, min_lat = m(min_lon, min_lat)
max_lon, max_lat = m(max_lon, max_lat)
corners.append([min_lat, min_lon, max_lat, max_lon])
patches = []
for corner in corners:
min_lat, min_lon, max_lat, max_lon = corner
rect = mpatches.Rectangle((min_lon, min_lat), max_lon - min_lon, max_lat - min_lat, facecolor=None, fill=False, linewidth=0.7)
patches.append(rect)
ax.add_collection(PatchCollection(patches))
ax.set_xlim([-125, -60]) # pylab.xlim([-400, 400])
ax.set_ylim([25, 50])
plt.setp(ax.get_yticklabels(), visible=False)
plt.setp(ax.get_xticklabels(), visible=False)
ax.yaxis.set_tick_params(size=0)
ax.xaxis.set_tick_params(size=0)
#plt.tick_params(axis='both', which='major', labelsize=25)
#ax.labelsize = '25'
#plt.subplots_adjust(bottom=0.2)
m.drawlsmask(land_color='gray',ocean_color="#b0c4de", lakes=True)
plt.tight_layout()
plt.savefig(filename)
#plt.close()
print "the plot saved in " + filename
def draw_kmeans_clusters(self, filename, figsize=(4,3)):
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from scipy.spatial import Voronoi, voronoi_plot_2d
from mpl_toolkits.basemap import Basemap, cm, maskoceans
#from matplotlib import style
#import seaborn as sns
#sns.set_style("white")
#plt.rc('text', usetex=True)
#plt.rc('font', family='serif')
#plt.rcParams['axes.facecolor']='white'
fig = plt.figure(figsize=figsize)
lllat = 24.396308
lllon = -124.848974
urlat = 49.384358
urlon = -66.885444
m = Basemap(llcrnrlat=lllat,
urcrnrlat=urlat,
llcrnrlon=lllon,
urcrnrlon=urlon,
resolution='c', projection='cyl')
m.drawmapboundary(fill_color = 'white')
m.drawcoastlines(linewidth=0.2)
m.drawcountries(linewidth=0.2)
ax = plt.gca()
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
for spine in ax.spines.itervalues():
spine.set_visible(False)
#fig = plt.figure() # figsize=(4,4.2)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
train_locs = self.df_train[['lat', 'lon']].values
n_clusters = int(np.ceil(train_locs.shape[0] / self.bucket_size))
n_clusters = 128
logging.info('n_cluster %d' %n_clusters)
clusterer = KMeans(n_clusters=n_clusters, n_jobs=10)
clusterer.fit(train_locs)
centroids = clusterer.cluster_centers_
centroids[:,[0, 1]] = centroids[:,[1, 0]]
mlon, mlat = m(*(centroids[:,0], centroids[:,1]))
centroids = np.transpose(np.vstack((mlon, mlat)))
vor = Voronoi(centroids)
#ax.set_xlim([-125, -60]) # pylab.xlim([-400, 400])
#ax.set_ylim([25, 50])
plt.setp(ax.get_yticklabels(), visible=False)
plt.setp(ax.get_xticklabels(), visible=False)
ax.yaxis.set_tick_params(size=0)
ax.xaxis.set_tick_params(size=0)
#plt.tick_params(axis='both', which='major', labelsize=25)
#ax.labelsize = '25'
#plt.subplots_adjust(bottom=0.2)
voronoi_plot_2d(vor, show_points=False, show_vertices=False, ax=ax, line_width=0.7)
m.drawlsmask(land_color='lightgray',ocean_color="#b0c4de", lakes=True)
plt.tight_layout()
plt.savefig(filename)
#plt.close()
print("the plot saved in " + filename)
def draw_training_points(self, filename='points.pdf', world=False, figsize=(4,3)):
'''
draws training points on map
'''
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap, cm, maskoceans
fig = plt.figure(figsize=figsize)
lllat = 24.396308
lllon = -124.848974
urlat = 49.384358
urlon = -66.885444
if world:
lllat = -90
lllon = -180
urlat = 90
urlon = 180
m = Basemap(llcrnrlat=lllat,
urcrnrlat=urlat,
llcrnrlon=lllon,
urcrnrlon=urlon,
resolution='c', projection='cyl')
m.drawmapboundary(fill_color = 'white')
m.drawcoastlines(linewidth=0.2)
m.drawcountries(linewidth=0.2)
ax = plt.gca()
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
for spine in ax.spines.itervalues():
spine.set_visible(False)
#fig = plt.figure() # figsize=(4,4.2)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
train_locs = self.df_train[['lat', 'lon']].values
mlon, mlat = m(*(train_locs[:,1], train_locs[:,0]))
#m.scatter(mlon, mlat, color='red', s=0.6)
m.plot(mlon, mlat, 'r.', markersize=1)
m.drawlsmask(land_color='lightgray',ocean_color="#b0c4de", lakes=True)
plt.tight_layout()
plt.savefig(filename)
plt.close()
print("the plot saved in " + filename)
if __name__ == '__main__':
data_loader = DataLoader(data_home='./data/', dataset='cmu')
data_loader.load_data()
data_loader.get_graph()
data_loader.tfidf()
data_loader.assignClasses()
pdb.set_trace()