Skip to content

Latest commit

 

History

History
108 lines (77 loc) · 4.42 KB

README.md

File metadata and controls

108 lines (77 loc) · 4.42 KB

Timeseries Forecasting using AWS Forecast

This is a self-contained, fully-reproducible project to forecast time series using serverless Lambda functions with TypeScript, AWS CDK, and Localstack.

Environment variables

  • All environment settings required to execute the production and test commands should be provided stored in the .env file.
  • An example .env.example is provided with dummy values. Copy this file, rename it to .env and provide the actual values, corresponding to the actual AWS account, API keys, etc.

AWS credentials for local unit testing

  • Make sure your AWS credentials for the profile specified in the environment variables is also registered in your ~/.aws/credentials file.

Useful npm commands

Build, watch, test

  • npm run build Compile Typescript to js
  • npm run watch Watch for changes to Typescript and compile
  • npm run test Run the Jest unit tests

Install awscli

  • pip3 install awscli to install or pip3 install --upgrade awscli to upgrade

Deploy to localstack

  • pip3 install localstack to install localstack or pip3 install localstack --upgrade to upgrade localstack to the latest
  • localstack:start Start the localhost container
  • Check localstack status http://localhost:4566/health
  • npm run cdklocal:bootstrap Bootstrap the CDK stack to be able to deploy it to localstack
  • npm run cdklocal:deploy Deploy the stack to localstack
  • localstack:stop Stop the localhost container

localstack useful commands

  • Bucket commands
    • Check forecast bucket's content aws --endpoint-url=http://localhost:4566 s3 ls --recursive amos-forecast-data
    • Add file to forecast bucket aws --endpoint-url=http://localhost:4566 s3api put-object --bucket amos-forecast-data --key config/api.config.tiingo.json --body ./config/api.config.tiingo.json aws --endpoint-url=http://localhost:4566 s3api put-object --bucket amos-forecast-data --key config/api.config.alphavantage.json --body ./config/api.config.alphavantage.json
  • Queue commands
    • Create queue aws --endpoint-url=http://localhost:4566 sqs purge-queue --queue-url http://localhost:4566/000000000000/amos-queue.fifo
    • Get queue url aws --endpoint-url=http://localhost:4566 sqs get-queue-url --queue-name amos-queue.fifo
    • Purge queue aws --endpoint-url=http://localhost:4566 sqs purge-queue --queue-url http://localhost:4566/000000000000/amos-queue.fifo
    • List queues aws --endpoint-url=http://localhost:4566 sqs list-queues

Deploy to AWS

  • npm run cdk:bootstrap Bootstrap the CDK stack to be able to deploy it to AWS
  • npm run cdk:deploy Deploy the stack to AWS

Running local unit tests

  • npm scripts are provided to run the tests. You can also use the jest extension in vscode to run tests individually.
  • Prerequisite: make sure localstack is up and running properly before executing tests. See section Deploy to localstack above.

State machine inputs

To execute the state machine manually, provide input in JSON format. It should be an object with this structure (values can vary, though).

Dataset State Machine Input Example

{
  "skipQueueing": false,
  "downloadStartDate": "2010-01-01",
  "downloadEndDate": "0d"
}

Forecast State Machine Input Example

{
  "import": { "enabled": false },
  "predictor": { "enabled": false },
  "forecast": { "enabled": false },
  "export": { "enabled": false },
  "analyze": { "enabled": false, "rebuild": true}
}

AWS Forecast resources

CDK resources

Credits and useful references

This repository expands on several original ideas and guidance provided by these blog post and accompanying repositories.