-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEvaluate_brain-tumors-detection_Yolov10.py
348 lines (257 loc) · 11.2 KB
/
Evaluate_brain-tumors-detection_Yolov10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# -*- coding: utf-8 -*-
"""
Created on ago 2024
@author: Alfonso Blanco
"""
#######################################################################
# PARAMETERS
######################################################################
# dataset
# https://universe.roboflow.com/test-svk7h/brain-tumors-detection/dataset/2
#dirname= "Brain-Tumors-Detection-2\\test\\images"
#dirnameLabels="Brain-Tumors-Detection-2\\test\\labels"
dirname= "test\\images"
dirnameLabels="test\\labels"
#dirnameYolo="runs\\train\\exp\\weights\\last.pt"
#dirnameYolo="last21epoch100detect1errors.pt"
dirnameYolo="last19epoch100Detect3errors.pt" # the better 100 detections and 3 error images y719, y774,y796
import cv2
import time
Ini=time.time()
#from ultralytics import YOLOv10
from ultralytics import YOLO
#model = YOLOv10(dirnameYolo)
model = YOLO(dirnameYolo)
class_list = model.model.names
print(class_list)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import os
import re
import imutils
########################################################################
def loadimages(dirname):
#########################################################################
# adapted from:
# https://www.aprendemachinelearning.com/clasificacion-de-imagenes-en-python/
# by Alfonso Blanco García
########################################################################
imgpath = dirname + "\\"
images = []
TabFileName=[]
print("Reading imagenes from ",imgpath)
NumImage=-2
Cont=0
for root, dirnames, filenames in os.walk(imgpath):
NumImage=NumImage+1
for filename in filenames:
if re.search("\.(jpg|jpeg|png|bmp|tiff)$", filename):
filepath = os.path.join(root, filename)
image = cv2.imread(filepath)
#print(filepath)
#print(image.shape)
images.append(image)
TabFileName.append(filename)
Cont+=1
return images, TabFileName
########################################################################
def loadlabels(dirnameLabels):
#########################################################################
# adapted from:
# https://www.aprendemachinelearning.com/clasificacion-de-imagenes-en-python/
# by Alfonso Blanco García
########################################################################
imgpath = dirnameLabels + "\\"
Labels = []
TabFileLabelsName=[]
Tabxyxy=[]
ContLabels=0
ContNoLabels=0
print("Reading labels from ",imgpath)
for root, dirnames, filenames in os.walk(imgpath):
for filename in filenames:
filepath = os.path.join(root, filename)
f=open(filepath,"r")
Label=""
xyxy=""
TabLinxyxy=[]
for linea in f:
#print(filename)
#print(linea)
indexFracture=int(linea[0])
Label=class_list[indexFracture]
#print(Label)
xyxy=linea[2:]
TabLinxyxy.append(xyxy)
Labels.append(Label)
if Label=="":
ContLabels+=1
else:
ContNoLabels+=1
TabFileLabelsName.append(filename)
Tabxyxy.append(TabLinxyxy)
return Labels, TabFileLabelsName, Tabxyxy, ContLabels, ContNoLabels
def unconvert(width, height, x, y, w, h):
xmax = int((x*width) + (w * width)/2.0)
xmin = int((x*width) - (w * width)/2.0)
ymax = int((y*height) + (h * height)/2.0)
ymin = int((y*height) - (h * height)/2.0)
return xmin, ymin, xmax, ymax
# ttps://medium.chom/@chanon.krittapholchai/build-object-detection-gui-with-yolov8-and-pysimplegui-76d5f5464d6c
def Detect_BrainTumor_With_Yolov10 (img):
Tabcrop_sagittal_t1wce=[]
y=[]
yMax=[]
x=[]
xMax=[]
Tabclass_name=[]
Tabclass_cod=[]
Tabconfidence=[]
# https://blog.roboflow.com/yolov10-how-to-train/
results = model(source=img)
for i in range(len(results)):
# may be several plates in a frameh
result=results[i]
xyxy= result.boxes.xyxy.numpy()
confidence= result.boxes.conf.numpy()
class_id= result.boxes.cls.numpy().astype(int)
print(class_id)
out_image = img.copy()
LabelTotal=""
for j in range(len(class_id)):
con=confidence[j]
Tabconfidence.append(con)
label=class_list[class_id[j]] + " " + str(con)[0:4]
print(label)
LabelTotal=LabelTotal+" " + label
box=xyxy[j]
crop_sagittal_t1wce=out_image[int(box[1]):int(box[3]),int(box[0]):int(box[2])]
Tabcrop_sagittal_t1wce.append(crop_sagittal_t1wce)
y.append(int(box[1]))
yMax.append(int(box[3]))
x.append(int(box[0]))
xMax.append(int(box[2]))
#
Tabclass_name.append(label)
Tabclass_cod.append(class_id[j])
return Tabconfidence, Tabcrop_sagittal_t1wce, y,yMax,x,xMax, Tabclass_name, Tabclass_cod, LabelTotal
def plot_image(image, boxes, boxesTrue, imageCV, TabFileName):
"""Plots predicted bounding boxes on the image"""
cmap = plt.get_cmap("tab20b")
#class_labels = PASCAL_CLASSES
class_labels=class_list
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
im = np.array(image)
height, width, _ = im.shape
# Create figure and axes
fig, ax = plt.subplots(1)
fig.suptitle(TabFileName)
# Display the image
ax.imshow(im)
# box[0] is x midpoint, box[2] is width
# box[1] is y midpoint, box[3] is height
# Create a Rectangle patch
Cont=0
print(boxes)
for box in boxes:
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
class_pred = box[0]
conf=box[1]
conf=str(conf)
box = box[2:]
upper_left_x = box[0] - box[2] / 2
upper_left_y = box[1] - box[3] / 2
rect = patches.Rectangle(
(upper_left_x * width, upper_left_y * height),
box[2] * width,
box[3] * height,
linewidth=2,
edgecolor=colors[int(class_pred)],
facecolor="none",
)
# Add the patch to the Axes
ax.add_patch(rect)
plt.text(
upper_left_x * width,
upper_left_y * height,
s=class_labels[int(class_pred)] + " conf: " + str(conf[:3]),
color="red",
verticalalignment="top",
bbox={"color": colors[int(class_pred)], "pad": 0},
)
Cont+=1
#if Cont > 1: break # only the most predicted box
#break
# rect with true fracture
plt.show()
###########################################################
# MAIN
##########################################################
Labels, TabFileLabelsName, TabxyxyTrue, ContLabels, ContNoLabels= loadlabels(dirnameLabels)
print("Number of images to test : " + str(len(Labels)))
#print("Number of files without labels : " + str(ContNoLabels))
#print("Number of files with labels : " + str(ContLabels))
imagesComplete, TabFileName=loadimages(dirname)
print("Number of images to test: " + str(len(imagesComplete)))
ContError=0
ContHit=0
ContNoDetected=0
for i in range (len(imagesComplete)):
if TabFileLabelsName[i][:len(TabFileLabelsName[i])-4] != TabFileName[i][:len(TabFileName[i])-4]:
print("ERROR SEQUENCING IMAGES AN LABELS " + TabFileLabelsName[i][:len(TabFileLabelsName[i])-4] +" --" + TabFileName[i][:len(TabFileName[i])-4])
break
# no se consideran las que no vienen labeladas
if Labels[i] == "": continue
gray=imagesComplete[i]
img=gray
imgTrue=imagesComplete[i]
#print(True)
#print(TabxyxyTrue[i])
for z in range (len(TabxyxyTrue[i])):
XcenterYcenterWH=TabxyxyTrue[i][z].split(" ")
width=float(imgTrue.shape[0])
height=float(imgTrue.shape[1])
x=float(XcenterYcenterWH[0])
y=float(XcenterYcenterWH[1])
w=float(XcenterYcenterWH[2])
h=float(XcenterYcenterWH[3])
xTrue,yTrue,xMaxTrue,yMaxTrue=unconvert(width, height, x, y, w, h)
start_pointTrue=(int(xTrue),int(yTrue))
end_pointTrue=(int(xMaxTrue),int( yMaxTrue))
colorTrue=(0,0,255)
# Using cv2.rectangle() method
# Draw a rectangle with green line borders of thickness of 2 px
imgTrue = cv2.rectangle(imgTrue, start_pointTrue, end_pointTrue,(0,255,0), 2)
Tabconfidence, TabImgSelect, y, yMax, x, xMax, Tabclass_name, Tabclass_cod, LabelTotal =Detect_BrainTumor_With_Yolov10(gray)
Tabnms_boxes=[]
#print(gray.shape)
#if TabImgSelect==[]:
if len(TabImgSelect)==0:
print(TabFileName[i] + " NON DETECTED")
ContNoDetected=ContNoDetected+1
continue
else:
#ContDetected=ContDetected+1
print(TabFileName[i] + " DETECTED ")
#for z in range(len(TabImgSelect)-1,0, -1):
for z in range(len(TabImgSelect)):
#if TabImgSelect[z] == []: continue
if len(TabImgSelect[z]) == 0: continue
gray1=TabImgSelect[z]
#cv2.waitKey(0)
# may be several tumors, positives and negatives
#print(x[z])
text_color = (255,255,255)
cv2.putText(gray, LabelTotal ,(20,20)
, cv2.FONT_HERSHEY_SIMPLEX , 1
, text_color, 2 ,cv2.LINE_AA)
start_point=(x[z],y[z])
end_point=(xMax[z], yMax[z])
color=(255,0,0)
img = cv2.rectangle(gray, start_point, end_point,color, 2)
plot_image(img, Tabnms_boxes, TabxyxyTrue[i], img, TabFileName[i])
print("")
print("NO detected=" + str(ContNoDetected))
print("")
print( " Time in seconds "+ str(time.time()-Ini))