-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexporter.py
84 lines (68 loc) · 3.8 KB
/
exporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from pyecharts import charts
from pyecharts import options as opts
from pyecharts.globals import CurrentConfig, OnlineHostType
import os
import datetime
import shutil
CurrentConfig.ONLINE_HOST = "./assets/"
def exportCharts(process_name, data, output_path):
page = charts.Page(
layout=charts.Page.DraggablePageLayout)
page.page_title = "{} 统计信息".format(process_name)
line_cpu = charts.Line(
opts.InitOpts(page_title="{} CPU占用(%)".format(process_name)))\
.set_global_opts(title_opts=opts.TitleOpts(title="CPU占用信息", subtitle="单位: %"))
line_cpu.add_xaxis(xaxis_data=data["Time"])
line_cpu.add_yaxis("CPU占用(%)", y_axis=data["CPU"], markline_opts=opts.MarkLineOpts(
data=[opts.MarkLineItem(type_="max"), opts.MarkLineItem(type_="average")]), label_opts=opts.LabelOpts(is_show=False))
line_mem = charts.Line(
opts.InitOpts(page_title="{} 内存占用(MB)".format(process_name)))\
.set_global_opts(title_opts=opts.TitleOpts(title="内存占用信息", subtitle="单位: MB"))
line_mem.add_xaxis(xaxis_data=data["Time"])
line_mem.add_yaxis("内存(MB)", y_axis=data["MEM"], markline_opts=opts.MarkLineOpts(
data=[opts.MarkLineItem(type_="max"), opts.MarkLineItem(type_="average")]), label_opts=opts.LabelOpts(is_show=False))
line_io = charts.Line(
opts.InitOpts(page_title="{} IO写(MB)".format(process_name)))\
.set_global_opts(title_opts=opts.TitleOpts(title="IO信息", subtitle="单位: MB"))
line_io.add_xaxis(xaxis_data=data["Time"])
line_io.add_yaxis("IO写(MB)", y_axis=data["IO"], markline_opts=opts.MarkLineOpts(
data=[opts.MarkLineItem(type_="max"), opts.MarkLineItem(type_="average")]), label_opts=opts.LabelOpts(is_show=False))
page.add(line_cpu, line_mem, line_io)
page.render(os.path.join(output_path, "{}.html".format(process_name)))
def export(data_dict: dict, output_path: str, interval):
process_dat_path = os.path.join(output_path, "process")
summury_txt_path = os.path.join(output_path, "summury.txt")
os.makedirs(process_dat_path, exist_ok=True)
shutil.copytree(os.path.join(os.path.dirname(os.path.abspath(
__file__)), "assets", "assets"), os.path.join(process_dat_path, "assets"))
# 统计信息
close_process_set = set() # 统计这个时间段内关闭的进程
start_process_set = set() # 统计这个时间段内开启的进程
start_timestamp = datetime.datetime.now()
stop_timestamp = datetime.datetime.now()
for process_name, pm in data_dict.items():
stat = pm.getStatistic()
exportCharts(process_name, stat, process_dat_path)
# 统计summury
if(stat["END_TIME"] != None):
close_process_set.add(process_name)
if stop_timestamp < stat["END_TIME"]:
stop_timestamp = stat["END_TIME"]
# 统计开始结束时间
if start_timestamp > stat["START_TIME"]:
start_timestamp = stat["START_TIME"]
for process_name, pm in data_dict.items():
stat = pm.getStatistic()
if start_timestamp + datetime.timedelta(milliseconds=interval) < stat["START_TIME"]:
# 之后启动的
start_process_set.add(process_name)
with open(summury_txt_path, "w") as f:
f.write("======== 汇总 ========\n")
f.write("报告时间:{}\n".format(datetime.datetime.now()))
f.write("统计时间段:{} - {}\n".format(start_timestamp, stop_timestamp))
f.write("======== 打开进程({}个) ========\n".format(len(start_process_set)))
for start_process in start_process_set:
f.write(start_process + "\n")
f.write("======== 关闭进程({}个) ========\n".format(len(close_process_set)))
for close_process in close_process_set:
f.write(close_process + "\n")