-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMyEvalCriteria.py
86 lines (74 loc) · 2.32 KB
/
MyEvalCriteria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python
# coding: utf-8
import numpy as np
from sklearn.metrics import mean_absolute_error
def rmse(predictions, targets):
"""
计算均方根误差亦称标准误差;
RMSE(Root Mean Square Error)
"""
return np.sqrt(((predictions - targets) ** 2).mean())
def corr(predictions, targets):
"""
计算Pearson相关系数
"""
return np.corrcoef(predictions.reshape(1,-1),targets.reshape(1,-1))[1,0]
def mae(predictions, targets):
"""
计算MSE(Mean Square Error)均方误差
"""
return mean_absolute_error(predictions,targets)
def mape(predictions, targets):
'''
//TODO
'''
return (abs(predictions - targets)/targets).mean()*100
def accuacy(predictions, targets,p=0.2):
'''
//TODO
'''
result = np.array(abs(predictions - targets)/targets).flatten()
return result[result<p].shape[0]/result.shape[0]*100
def ce(predictions, targets):
'''
//TODO
'''
ave = targets.mean()
return 1- ((predictions - targets) ** 2).sum()/np.array([(i-ave)**2 for i in targets]).sum()
def KGE(predictions, targets):
'''
//TODO
'''
r = np.corrcoef(predictions.reshape(1,-1),targets.reshape(1,-1))[1,0]
sigma = np.std(predictions)/np.std(targets)
theta = np.mean(predictions)/np.mean(targets)
return 1-((r-1)**2+(sigma-1)**2+(theta-1)**2)**0.5
def PFC(predictions, targets):
'''
//TODO
'''
threshold = (targets).mean()/3
idx = predictions>threshold
predictions,targets = predictions[idx],targets[idx]
if (((predictions - targets)**2).sum())**0.5==0:
return 0
return (((predictions - targets)**2*targets**2).sum())**0.25/(((predictions - targets)**2).sum())**0.5
def ia(predictions, targets):
'''
//TODO
'''
ave = np.mean(targets)
return 1-((predictions - targets) ** 2).sum()/(np.array([(abs(i-ave)+abs(j-ave))**2 for i,j in zip(targets,predictions)])).sum()
def MS4E(predictions, targets):
'''
//TODO
'''
n = targets.shape[0]
return ((predictions - targets) ** 4).sum()/n
def BHV(predictions, targets, threshold=1722):
'''
//ref(doi):10.1029/2007WR006716
'''
idx = predictions>threshold
predictions,targets = predictions[idx],targets[idx]
return (predictions - targets).sum()/targets.sum()*100