-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
134 lines (99 loc) · 5.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Author: XiaShan
@Contact: 153765931@qq.com
@Time: 2024/3/23 16:12
"""
import os, torch, random, math
import torch.optim as optim
import numpy as np
import torch.nn.functional as F
from tqdm import tqdm, trange
from data import load_dataset
from model import SimGNN
from parameter import parameter_parser, IOStream, table_printer
def train(args, IO, train_dataset, num_nodes_id):
# 使用GPU or CPU
device = torch.device('cpu' if args.gpu_index < 0 else 'cuda:{}'.format(args.gpu_index))
if args.gpu_index < 0:
IO.cprint('Using CPU')
else:
IO.cprint('Using GPU: {}'.format(args.gpu_index))
torch.cuda.manual_seed(args.seed) # 设置PyTorch GPU随机种子
# 加载模型及参数量统计
model = SimGNN(args, num_nodes_id).to(device)
IO.cprint(str(model))
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
IO.cprint('Model Parameter: {}'.format(total_params))
# 优化器
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
IO.cprint('Using Adam')
epochs = trange(args.epochs, leave=True, desc="Epoch")
for epoch in epochs:
random.shuffle(train_dataset)
train_batches = []
for graph in range(0, len(train_dataset), 16):
train_batches.append(train_dataset[graph:graph + 16])
loss_epoch = 0 # 一个epoch,所有样本损失
for index, batch in tqdm(enumerate(train_batches), total=len(train_batches), desc="Train_Batches"):
optimizer.zero_grad()
loss_batch = 0 # 一个batch,样本损失
for data in batch:
# 数据变成GPU支持的数据类型
data["edge_index_1"], data["edge_index_2"] = data["edge_index_1"].to(device), data["edge_index_2"].to(device)
data["features_1"], data["features_2"] = data["features_1"].to(device), data["features_2"].to(device)
prediction = model(data)
loss_batch = loss_batch + F.mse_loss(data["target"], prediction.cpu())
loss_epoch = loss_epoch + loss_batch.item()
loss_batch.backward()
optimizer.step()
IO.cprint('Epoch #{}, Train_Loss: {:.6f}'.format(epoch, loss_epoch/len(train_dataset)))
torch.save(model, 'outputs/%s/model.pth' % args.exp_name)
IO.cprint('The current best model is saved in: {}'.format('******** outputs/%s/model.pth *********' % args.exp_name))
def test(args, IO, test_dataset):
"""测试模型"""
device = torch.device('cpu' if args.gpu_index < 0 else 'cuda:{}'.format(args.gpu_index))
# 输出内容保存在之前的训练日志里
IO.cprint('********** TEST START **********')
IO.cprint('Reload Best Model')
IO.cprint('The current best model is saved in: {}'.format('******** outputs/%s/model.pth *********' % args.exp_name))
model = torch.load('outputs/%s/model.pth' % args.exp_name).to(device)
#model = model.eval() # 创建一个新的评估模式的模型对象,不覆盖原模型
ground_truth = [] # 存放data["norm_ged"]
scores = [] # 存放模型预测与ground_truth的损失
for data in test_dataset:
data["edge_index_1"], data["edge_index_2"] = data["edge_index_1"].to(device), data["edge_index_2"].to(device)
data["features_1"], data["features_2"] = data["features_1"].to(device), data["features_2"].to(device)
prediction = model(data)
scores.append((-math.log(prediction.item()) - data["norm_ged"]) ** 2) # MSELoss
ground_truth.append(data["norm_ged"])
model_error = np.mean(scores)
norm_ged_mean = np.mean(ground_truth)
baseline_error = np.mean([(gt - norm_ged_mean) ** 2 for gt in ground_truth])
IO.cprint('Baseline_Error: {:.6f}, Model_Test_Error: {:.6f}'.format(baseline_error, model_error))
def exp_init():
"""实验初始化"""
if not os.path.exists('outputs'):
os.mkdir('outputs')
if not os.path.exists('outputs/' + args.exp_name):
os.mkdir('outputs/' + args.exp_name)
# 跟踪执行脚本,windows下使用copy命令,且使用双引号
os.system(f"copy main.py outputs\\{args.exp_name}\\main.py.backup")
os.system(f"copy data.py outputs\\{args.exp_name}\\data.py.backup")
os.system(f"copy model.py outputs\\{args.exp_name}\\model.py.backup")
os.system(f"copy parameter.py outputs\\{args.exp_name}\\parameter.py.backup")
# os.system('cp main.py outputs' + '/' + args.exp_name + '/' + 'main.py.backup')
# os.system('cp data.py outputs' + '/' + args.exp_name + '/' + 'data.py.backup')
# os.system('cp model.py outputs' + '/' + args.exp_name + '/' + 'model.py.backup')
# os.system('cp parameter.py outputs' + '/' + args.exp_name + '/' + 'parameter.py.backup')
if __name__ == '__main__':
args = parameter_parser()
random.seed(args.seed) # 设置Python随机种子
torch.manual_seed(args.seed) # 设置PyTorch随机种子
exp_init()
IO = IOStream('outputs/' + args.exp_name + '/run.log')
IO.cprint(str(table_printer(args))) # 参数可视化
train_dataset, test_dataset, num_nodes_id = load_dataset()
train(args, IO, train_dataset, num_nodes_id)
test(args, IO, test_dataset)