forked from go-spatial/geom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpoint.go
96 lines (74 loc) · 2.31 KB
/
point.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
package geom
import (
"errors"
"math"
)
// ErrNilPoint is thrown when a point is null but shouldn't be
var ErrNilPoint = errors.New("geom: nil Point")
var nan = math.NaN()
// EmptyPoint describes an empty 2D point object.
var EmptyPoint = Point{nan, nan}
// Point describes a simple 2D point
type Point [2]float64
// XY returns an array of 2D coordinates
func (p Point) XY() [2]float64 {
return p
}
// SetXY sets a pair of coordinates
func (p *Point) SetXY(xy [2]float64) (err error) {
if p == nil {
return ErrNilPoint
}
p[0] = xy[0]
p[1] = xy[1]
return
}
// X is the x coordinate of a point in the projection
func (p Point) X() float64 { return p[0] }
// Y is the y coordinate of a point in the projection
func (p Point) Y() float64 { return p[1] }
// MaxX is the same as X
func (p Point) MaxX() float64 { return p[0] }
// MinX is the same as X
func (p Point) MinX() float64 { return p[0] }
// MaxY is the same as y
func (p Point) MaxY() float64 { return p[1] }
// MinY is the same as y
func (p Point) MinY() float64 { return p[1] }
// Area of a point is always 0
func (p Point) Area() float64 { return 0 }
// Subtract will return a new point that is the subtraction of pt from p
func (p Point) Subtract(pt Point) Point {
return Point{
p[0] - pt[0],
p[1] - pt[1],
}
}
// Multiply will return a new point that is the multiplication of pt and p
func (p Point) Multiply(pt Point) Point {
return Point{
p[0] * pt[0],
p[1] * pt[1],
}
}
// CrossProduct will return the cross product of the p and pt.
func (p Point) CrossProduct(pt Point) float64 {
return float64((p[0] * pt[1]) - (p[1] * pt[0]))
}
// Magnitude of the point is the size of the point
func (p Point) Magnitude() float64 {
return math.Sqrt((p[0] * p[0]) + (p[1] * p[1]))
}
// WithinCircle indicates weather the point p is contained
// the the circle defined by a,b,c
// REF: See Guibas and Stolf (1985) p.107
func (p Point) WithinCircle(a, b, c Point) bool {
bcp := Triangle{[2]float64(b), [2]float64(c), [2]float64(p)}
acp := Triangle{[2]float64(a), [2]float64(c), [2]float64(p)}
abp := Triangle{[2]float64(a), [2]float64(b), [2]float64(p)}
abc := Triangle{[2]float64(a), [2]float64(b), [2]float64(c)}
return (a[0]*a[0]+a[1]*a[1])*bcp.Area()-
(b[0]*b[0]+b[1]*b[1])*acp.Area()+
(c[0]*c[0]+c[1]*c[1])*abp.Area()-
(p[0]*p[0]+p[1]*p[1])*abc.Area() > 0
}